cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000598 Number of rooted ternary trees with n nodes; number of n-carbon alkyl radicals C(n)H(2n+1) ignoring stereoisomers.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 39, 89, 211, 507, 1238, 3057, 7639, 19241, 48865, 124906, 321198, 830219, 2156010, 5622109, 14715813, 38649152, 101821927, 269010485, 712566567, 1891993344, 5034704828, 13425117806, 35866550869, 95991365288, 257332864506, 690928354105
Offset: 0

Views

Author

Keywords

Comments

Number of unlabeled rooted trees in which each node has out-degree <= 3.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000625 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The out-degree is then <= 3.
Other descriptions of this sequence: quartic planted trees with n nodes; ternary rooted trees with n nodes and height at most 3.
The number of aliphatic amino acids with n carbon atoms in the side chain, and no rings or double bonds, has the same growth as this sequence. - Konrad Gruetzmann, Aug 13 2012

Examples

			From _Joerg Arndt_, Feb 25 2017: (Start)
The a(5) = 8 rooted trees with 5 nodes and out-degrees <= 3 are:
:         level sequence    out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 4 ]    [ 1 1 1 1 . ]
:  O--o--o--o--o
:
:     2:  [ 0 1 2 3 3 ]    [ 1 1 2 . . ]
:  O--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 2 ]    [ 1 2 1 . . ]
:  O--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 1 ]    [ 2 1 1 . . ]
:  O--o--o--o
:  .--o
:
:     5:  [ 0 1 2 2 2 ]    [ 1 3 . . . ]
:  O--o--o
:     .--o
:     .--o
:
:     6:  [ 0 1 2 2 1 ]    [ 2 2 . . . ]
:  O--o--o
:     .--o
:  .--o
:
:     7:  [ 0 1 2 1 2 ]    [ 2 1 . 1 . ]
:  O--o--o
:  .--o--o
:
:     8:  [ 0 1 2 1 1 ]    [ 3 1 . . . ]
:  O--o--o
:  .--o
:  .--o
(End)
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 62 (quoting Cayley, who is wrong).
  • A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong).
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.397.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • Knop, Mueller, Szymanski and Trinajstich, Computer generation of certain classes of molecules.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.
  • G. Polya, Mathematical and Plausible Reasoning, Vol. 1 Prob. 4 pp. 85; 233.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598,z,n);
    # Another Maple program for g.f. G000598:
    G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2,G000598)+2*subs(x=x^3,G000598)),x, n+1),x,n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n,x,n+1); od; G000598;
    spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];
  • Mathematica
    m = 45; Clear[f]; f[1, x_] := 1+x; f[n_, x_] := f[n, x] = Expand[1+x*(f[n-1, x]^3/6 + f[n-1, x^2]*f[n-1, x]/2 + f[n-1, x^3]/3)][[1 ;; n]]; Do[f[n, x], {n, 2, m}]; CoefficientList[f[m, x], x]
    (* second program (after N. J. A. Sloane): *)
    m = 45; gf[] = 0; Do[gf[z] = 1 + z*(gf[z]^3/6 + gf[z^2]*gf[z]/2 + gf[z^3]/3) + O[z]^m // Normal, m]; CoefficientList[gf[z], z]  (* Jean-François Alcover, Sep 23 2014, updated Jan 11 2018 *)
    b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *)
    b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0,
      Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
      b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    Join[{1},Table[b[n-1, n-1, m, m], {n, 1, 35}]] (* Robert A. Russell, Dec 27 2022 *)
  • PARI
    seq(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); Vec(g)} \\ Andrew Howroyd, May 22 2018
    
  • SageMath
    def seq(n):
        B = PolynomialRing(QQ, 't', n+1);t = B.gens()
        R. = B[[]]
        T = sum([t[i] * z^i for i in range(1,n+1)]) + O(z^(n+1))
        lhs, rhs = T, 1 + z/6 * (T(z)^3 + 3*T(z)*T(z^2) + 2*T(z^3))
        I = B.ideal([lhs.coefficients()[i] - rhs.coefficients()[i] for i in range(n)])
        return [I.reduce(t[i]) for i in range(1,n+1)]
    seq(33) # Chris Grossack, Mar 31 2025

Formula

G.f. A(x) satisfies A(x) = 1 + (1/6)*x*(A(x)^3 + 3*A(x)*A(x^2) + 2*A(x^3)).
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.8154600331761507465266167782426995425365065396907..., c = 0.517875906458893536993162356992854345458168348098... . - Vaclav Kotesovec, Aug 15 2015

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A000602 Number of n-node unrooted quartic trees; number of n-carbon alkanes C(n)H(2n+2) ignoring stereoisomers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159, 355, 802, 1858, 4347, 10359, 24894, 60523, 148284, 366319, 910726, 2278658, 5731580, 14490245, 36797588, 93839412, 240215803, 617105614, 1590507121, 4111846763, 10660307791, 27711253769
Offset: 0

Views

Author

Keywords

Comments

Trees are unrooted, nodes are unlabeled. Every node has degree <= 4.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000628 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The degree of each node is then <= 4.

Examples

			a(6)=5 because hexane has five isomers: n-hexane; 2-methylpentane; 3-methylpentane; 2,2-dimethylbutane; 2,3-dimethylbutane. - Michael Lugo (mtlugo(AT)mit.edu), Mar 15 2003 (corrected by _Andrey V. Kulsha_, Sep 22 2011)
		

References

  • Klemens Adam, Die Anzahlbestimmung der isomeren Alkane, MNU 1983, 36, 29 (in German).
  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
  • L. Bytautats, D. J. Klein, Alkane Isomer Combinatorics: Stereostructure enumeration and graph-invariant and molecular-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
  • A. Cayley, Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden..., Chem. Ber. 8 (1875), 1056-1059.
  • R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6.1 Chemical Isomers, p. 299.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • J. B. Hendrickson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 2 on page 103.
  • M. D. Jackson and T. I. Bieber, Applications of degree distribution, 2: construction and enumeration of isomers in the alkane series, J. Chem. Info. and Computer Science, 33 (1993), 701-708.
  • J. Lederberg et al., Applications of artificial intelligence for chemical systems, I: The number of possible organic compounds. Acyclic structures containing C, H, O and N, J. Amer. Chem. Soc., 91 (1969), 2973-2097.
  • L. M. Masinter, Applications of artificial intelligence for chemical systems, XX, Exhaustive generation of cyclic and acyclic isomers, J. Amer. Chem. Soc., 96 (1974), 7702-7714.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920. [Gives a(60) correctly - compare first link below]
  • M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
  • D. H. Rouvray, An introduction to the chemical applications of graph theory, Congress. Numerant., 55 (1986), 267-280. - N. J. A. Sloane, Apr 08 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Marten J. ten Hoor, Formula for Success?, Education in Chemistry, 2005, 42(1), 10.
  • S. Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.

Crossrefs

Column k=4 of A144528.
A000602 = A000022 + A000200 for n>0.

Programs

  • Maple
    A000602 := proc(n)
        if n=0 then
            1
        else
            A000022(n)+A000200(n);
        end if;
    end proc:
  • Mathematica
    n = 40; (* algorithm from Rains and Sloane *)
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S4[T,h-1,z]z - S4[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,
      k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *) n = 40;
    gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A000598 *)
    ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)

Formula

a(n) = A010372(n) + A010373(n/2) for n even, a(n) = A010372(n) for n odd.
Also equals A000022 + A000200 (n>0), both of which have known generating functions. Also g.f. = A000678(x) - A000599(x) + A000598(x^2) = (x + x^2 + 2x^3 + ...) - (x^2 + x^3 + 3x^4 + ...) + (1 + x^2 + x^4 + ...) = 1 + x + x^2 + x^3 + 2x^4 + 3x^5 + ...
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S4,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^4 + 6*B(x)^2*B(x^2) + 8*B(x)*B(x^3) + 3*B(x^2)^2 + 6*B(x^4)) / 24, where B(x) = 1 + x * cycle_index(S3,B(x)) = 1 + x * (B(x)^3 + 3*B(x)*B(x^2) + 2*B(x^3)) / 6 is the generating function for A000598. - Robert A. Russell, Jan 16 2023

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A000642 a(1)=0; for n>1, a(n) = number of isomeric hydrocarbons of the acetylene series with carbon content n.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 14, 32, 72, 171, 405, 989, 2426, 6045, 15167, 38422, 97925, 251275, 648061, 1679869, 4372872, 11428365, 29972078, 78859809, 208094977, 550603722, 1460457242, 3882682803, 10344102122, 27612603765, 73844151259, 197818389539
Offset: 1

Views

Author

Keywords

Comments

The former definition was "Number of alkyl derivatives of acetylene X^{II} C_n H_{2n+2} with n carbon atoms" with offset 0.
a(n+1) is the number of rooted trees with n nodes and out-degree <= 2 on the root and out-degree <= 3 on all other nodes. See illustration of initial terms. - Washington Bomfim, Nov 28 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 32; B[] = 0; Do[B[x] = 1 + (1/6)*x*(B[x]^3 + 3*B[x]*B[x^2] + 2*B[x^3]) + O[x]^terms // Normal, terms];
    A[x_] = (1/2)*x*(B[x^2] + B[x]^2) + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jun 28 2012, updated Jan 10 2018 *)
  • PARI
    \\ here G(n) is A000598 as g.f.
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    seq(n)={my(g=G(n)); Vec(subst(g,x,x^2) + g^2, -(n+1))/2} \\ Andrew Howroyd, Nov 28 2020

Formula

G.f.: A(x)=(1/2)*x*(B(x^2)+B(x)^2), where B(x) = g.f. for A000598.
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.815460033176... and c = 0.13833565403175156418512996853... - Vaclav Kotesovec, Feb 11 2019

Extensions

I changed the definition and offset so as to agree with Coffman et al. (1933). - N. J. A. Sloane, Jan 13 2019

A000631 Number of ethylene derivatives with n carbon atoms.

Original entry on oeis.org

1, 1, 3, 5, 13, 27, 66, 153, 377, 914, 2281, 5690, 14397, 36564, 93650, 240916, 623338, 1619346, 4224993, 11062046, 29062341, 76581151, 202365823, 536113477, 1423665699, 3788843391, 10103901486, 26995498151, 72253682560, 193706542776
Offset: 2

Views

Author

Keywords

Comments

Number of structural isomers of alkenes C_n H_{2n} with n carbon atoms.
Number of unicyclic graphs of n nodes where a double-edge replaces the cycle, [A217781], end-points of the double-edge of out-degrees <= 2, other nodes having out-degrees <= 3.
Number of rooted trees on n+1 nodes where the root has degree 2, the 2 children of the root have out-degrees <= 2, and the other nodes have out-degrees <= 3.
See illustration of initial terms. - Washington Bomfim, Nov 30 2020

References

  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000642, A000598, A027852 (out-degrees of nodes not limited).

Programs

  • PARI
    \\ Here G(n) is A000598 as g.f., h is A000642.
    seq(n)={my(g=G(n), h=(subst(g, x, x^2) + g^2)/2); Vec(subst(h, x, x^2) + h^2)/2} \\ Andrew Howroyd, Dec 01 2020

Formula

a(n) = b(1)b(n-1) + b(2)b(n-2) + b(3)b(n-3) + ... + b(n/2)(b(n/2) + 1)/2 when n is even or b(1)b(n-1) + b(2)b(n-2) + b(3)b(n-3) + ... + b((n-1)/2)b((n + 1)/2) when n is odd, where b(n) = A000642(n). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008
a(n) = Sum_{k=1..(n-1)/2}( f(k) * f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2 + f(n/2) ) / 2 where f(n) = A000642(n+1). - Washington Bomfim, Nov 29 2020
G.f.: (g(x^2) + g(x)^2)/2 where x*g(x) is the g.f. of A000642. - Andrew Howroyd, Dec 01 2020

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 24 2008

A261340 Decimal expansion of the radius of convergence of the generating function of A000598, the number of rooted ternary trees of n vertices.

Original entry on oeis.org

3, 5, 5, 1, 8, 1, 7, 4, 2, 3, 1, 4, 3, 7, 7, 3, 9, 2, 8, 8, 2, 2, 4, 4, 4, 7, 3, 6, 4, 7, 6, 3, 2, 6, 3, 6, 7, 0, 8, 7, 4, 6, 9, 5, 4, 1, 7, 5, 3, 2, 2, 1, 3, 4, 2, 3, 8, 1, 2, 9, 4, 9, 9, 7, 1, 2, 8, 0, 0, 1, 8, 0, 5, 7, 5, 5, 5, 7, 8, 2, 8, 8, 6, 7, 9, 8, 1, 3, 8, 1, 0, 8, 2, 4, 1, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Aug 15 2015

Keywords

Examples

			0.35518174231437739288224447364763263670874695417532...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 298.

Crossrefs

Programs

  • Mathematica
    digits = 97; m = 2 digits + 10; For[gf = 0; i = 0, i <= m, i++, gf = Series[1 + x*(gf^3/6 + (gf /. x -> x^2)*gf/2 + (gf /. x -> x^3)/3), {x, 0, m + 1}] // Normal];
    g[r_] := Module[{r2, r3, X, ym}, r2 = gf /. x -> r^2; r3 = gf /. x -> r^3; X[y_] = (y - 1)/(y^3/6 + r2*y/2 + r3/3); ym = y /. FindRoot[X'[y] == 0, {y, 2}, WorkingPrecision -> digits + 5]; X[ym]]; rho = FixedPoint[g, 1/3, SameTest -> (Abs[#1 - #2] < 10^-digits &)]; RealDigits[rho, 10, digits] // First

Extensions

More digits from Vaclav Kotesovec, Aug 15 2015
More digits and Mma code updated by Jean-François Alcover, Apr 18 2016

A317722 Number of connected graphs with n nodes and no node a member of more than one cycle.

Original entry on oeis.org

1, 1, 2, 3, 8, 18, 56, 165, 563, 1937, 7086, 26396, 101383, 395821, 1573317, 6335511, 25825861, 106344587, 441919711, 1851114466, 7809848543, 33162241547, 141636863809, 608144007472, 2623832050460, 11370768445682, 49478287669666, 216109924932762, 947216963083175
Offset: 0

Views

Author

R. J. Mathar, Aug 05 2018

Keywords

Comments

The sequence counts connected, loopless, undirected graphs with cycles that do not overlap (cycles have length >= 2), which means any pair of cycles does not have common edges or nodes.
Examples of these graphs are the trees (A000055), the unicyclic graphs (A001429, A002094), or the graphs with cycles without chords.
The concept is both narrower and wider than the concept for Husimi trees, because cycles in Husimi trees may share nodes (but not edges), and because cycles in Husimi trees need to have length >= 3.
There is a mapping/contraction of these graphs to trees: replace each cycle by a single node, attaching all edges that enter a node in the cycle to that node. That tree associated with the graph could be called the skeleton tree.
By reversing that surjection of the graphs to trees, we may generate our graphs with non-overlapping cycles by generating the set of weighted trees (A303841) and replacing the nodes by cycles of lengths that equals their weight.

Crossrefs

Cf. A036250, A381468 (without 2-cycles).

Programs

  • PARI
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d,y^d])}
    R(n,y)={my(g=x+O(x^2)); for(n=2, n, my(p=x*EulerMTS(g), p2=raise(p,2)); g=p + p*y*(p/(1 - p) + (p + p2)/(1 - p2))/2); g}
    G(n,y=1)={my(g=R(n,y), p = x*EulerMTS(g) + O(x*x^n));
      my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 );
      my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) );
      1 + p + (raise(g,2) - g^2 + y*(r + c - 2*p))/2 }
    { Vec(G(30)) } \\ Andrew Howroyd, Feb 25 2025

Formula

a(n) >= A036250(n).

Extensions

a(5) corrected. - R. J. Mathar, Aug 12 2018
Showing 1-6 of 6 results.