cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000598 Number of rooted ternary trees with n nodes; number of n-carbon alkyl radicals C(n)H(2n+1) ignoring stereoisomers.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 39, 89, 211, 507, 1238, 3057, 7639, 19241, 48865, 124906, 321198, 830219, 2156010, 5622109, 14715813, 38649152, 101821927, 269010485, 712566567, 1891993344, 5034704828, 13425117806, 35866550869, 95991365288, 257332864506, 690928354105
Offset: 0

Views

Author

Keywords

Comments

Number of unlabeled rooted trees in which each node has out-degree <= 3.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000625 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The out-degree is then <= 3.
Other descriptions of this sequence: quartic planted trees with n nodes; ternary rooted trees with n nodes and height at most 3.
The number of aliphatic amino acids with n carbon atoms in the side chain, and no rings or double bonds, has the same growth as this sequence. - Konrad Gruetzmann, Aug 13 2012

Examples

			From _Joerg Arndt_, Feb 25 2017: (Start)
The a(5) = 8 rooted trees with 5 nodes and out-degrees <= 3 are:
:         level sequence    out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 4 ]    [ 1 1 1 1 . ]
:  O--o--o--o--o
:
:     2:  [ 0 1 2 3 3 ]    [ 1 1 2 . . ]
:  O--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 2 ]    [ 1 2 1 . . ]
:  O--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 1 ]    [ 2 1 1 . . ]
:  O--o--o--o
:  .--o
:
:     5:  [ 0 1 2 2 2 ]    [ 1 3 . . . ]
:  O--o--o
:     .--o
:     .--o
:
:     6:  [ 0 1 2 2 1 ]    [ 2 2 . . . ]
:  O--o--o
:     .--o
:  .--o
:
:     7:  [ 0 1 2 1 2 ]    [ 2 1 . 1 . ]
:  O--o--o
:  .--o--o
:
:     8:  [ 0 1 2 1 1 ]    [ 3 1 . . . ]
:  O--o--o
:  .--o
:  .--o
(End)
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 62 (quoting Cayley, who is wrong).
  • A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong).
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.397.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • Knop, Mueller, Szymanski and Trinajstich, Computer generation of certain classes of molecules.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.
  • G. Polya, Mathematical and Plausible Reasoning, Vol. 1 Prob. 4 pp. 85; 233.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598,z,n);
    # Another Maple program for g.f. G000598:
    G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2,G000598)+2*subs(x=x^3,G000598)),x, n+1),x,n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n,x,n+1); od; G000598;
    spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];
  • Mathematica
    m = 45; Clear[f]; f[1, x_] := 1+x; f[n_, x_] := f[n, x] = Expand[1+x*(f[n-1, x]^3/6 + f[n-1, x^2]*f[n-1, x]/2 + f[n-1, x^3]/3)][[1 ;; n]]; Do[f[n, x], {n, 2, m}]; CoefficientList[f[m, x], x]
    (* second program (after N. J. A. Sloane): *)
    m = 45; gf[] = 0; Do[gf[z] = 1 + z*(gf[z]^3/6 + gf[z^2]*gf[z]/2 + gf[z^3]/3) + O[z]^m // Normal, m]; CoefficientList[gf[z], z]  (* Jean-François Alcover, Sep 23 2014, updated Jan 11 2018 *)
    b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *)
    b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0,
      Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
      b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    Join[{1},Table[b[n-1, n-1, m, m], {n, 1, 35}]] (* Robert A. Russell, Dec 27 2022 *)
  • PARI
    seq(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); Vec(g)} \\ Andrew Howroyd, May 22 2018
    
  • SageMath
    def seq(n):
        B = PolynomialRing(QQ, 't', n+1);t = B.gens()
        R. = B[[]]
        T = sum([t[i] * z^i for i in range(1,n+1)]) + O(z^(n+1))
        lhs, rhs = T, 1 + z/6 * (T(z)^3 + 3*T(z)*T(z^2) + 2*T(z^3))
        I = B.ideal([lhs.coefficients()[i] - rhs.coefficients()[i] for i in range(n)])
        return [I.reduce(t[i]) for i in range(1,n+1)]
    seq(33) # Chris Grossack, Mar 31 2025

Formula

G.f. A(x) satisfies A(x) = 1 + (1/6)*x*(A(x)^3 + 3*A(x)*A(x^2) + 2*A(x^3)).
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.8154600331761507465266167782426995425365065396907..., c = 0.517875906458893536993162356992854345458168348098... . - Vaclav Kotesovec, Aug 15 2015

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A000642 a(1)=0; for n>1, a(n) = number of isomeric hydrocarbons of the acetylene series with carbon content n.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 14, 32, 72, 171, 405, 989, 2426, 6045, 15167, 38422, 97925, 251275, 648061, 1679869, 4372872, 11428365, 29972078, 78859809, 208094977, 550603722, 1460457242, 3882682803, 10344102122, 27612603765, 73844151259, 197818389539
Offset: 1

Views

Author

Keywords

Comments

The former definition was "Number of alkyl derivatives of acetylene X^{II} C_n H_{2n+2} with n carbon atoms" with offset 0.
a(n+1) is the number of rooted trees with n nodes and out-degree <= 2 on the root and out-degree <= 3 on all other nodes. See illustration of initial terms. - Washington Bomfim, Nov 28 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    terms = 32; B[] = 0; Do[B[x] = 1 + (1/6)*x*(B[x]^3 + 3*B[x]*B[x^2] + 2*B[x^3]) + O[x]^terms // Normal, terms];
    A[x_] = (1/2)*x*(B[x^2] + B[x]^2) + O[x]^terms;
    CoefficientList[A[x], x] (* Jean-François Alcover, Jun 28 2012, updated Jan 10 2018 *)
  • PARI
    \\ here G(n) is A000598 as g.f.
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    seq(n)={my(g=G(n)); Vec(subst(g,x,x^2) + g^2, -(n+1))/2} \\ Andrew Howroyd, Nov 28 2020

Formula

G.f.: A(x)=(1/2)*x*(B(x^2)+B(x)^2), where B(x) = g.f. for A000598.
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.815460033176... and c = 0.13833565403175156418512996853... - Vaclav Kotesovec, Feb 11 2019

Extensions

I changed the definition and offset so as to agree with Coffman et al. (1933). - N. J. A. Sloane, Jan 13 2019

A121331 Number of bridged bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).

Original entry on oeis.org

1, 2, 6, 15, 39, 99, 258, 671, 1762, 4657, 12372, 33036, 88590, 238483, 644045, 1744542, 4737341, 12894158, 35165994, 96083192, 262951511, 720685274, 1977846334, 5434588909, 14949284828, 41163690109, 113451949753, 312955174089, 863965424349, 2386874582238
Offset: 5

Views

Author

N. J. A. Sloane, Aug 27 2006

Keywords

Comments

Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of the same even length joined along half their length and all nodes having degree at most 4. The resulting graph will have three equal length cycles. - Andrew Howroyd, May 25 2018

Examples

			From _Andrew Howroyd_, May 25 2018: (Start)
Illustration of graphs for n=5 and n=6:
    o          o--o       o
   /|\        /|\        /|\
  o o o      o o o      o o o--o
   \|/        \|/        \|/
    o          o          o
.
Illustration of graphs for n=7:
    o--o      o--o--o   o--o        o        o          o   o
   /|\       /|\       /|\         /|\      /|\        /|\ /
  o o o     o o o     o o o--o    o o o    o o o--o   o o o
   \|/       \|/       \|/       / \|/ \    \|/   |    \|/ \
    o--o      o         o       o   o   o    o    o     o   o
(End)
		

Crossrefs

Programs

  • Mathematica
    G[n_] := Module[{g}, g[] = 0; Do[g[x] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    C1[n_] := Sum[(d1^(3*k)+3*d1^k*d2^k + 2*d3^k), {k, 1, Quotient[n, 3]}]/12;
    C2[n_] := Sum[(d1^Mod[k, 2]*d2^Quotient[k, 2])^3 + 3*d1^Mod[k, 2]* d2^(Quotient[k, 2] + k) + 2*d3^Mod[k, 2]*d6^Quotient[k, 2], {k, 1, Quotient[n, 3]}]/12;
    seq[n_] := Module[{s, d, g}, s = G[n]; d = x*(s^2 + (s /. x -> x^2))/2; g[p_, e_] := Normal[(p+O[x]^(Quotient[n, e]+1))] /. x :> x^e; g[s, 1]^2* (C1[n-2] /. Thread[{d1, d2, d3} :> {g[d, 1], g[d, 2], g[d, 3]}]) + g[s, 2]*(C2[n-2] /. Thread[{d1, d2, d3, d6} :> {g[d, 1], g[d, 2], g[d, 3], g[d, 6]}]) + O[x]^n] // CoefficientList[#, x]& // Drop[#, 3]&;
    seq[33] (* Jean-François Alcover, Sep 08 2019, after Andrew Howroyd *)
  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    C1(n)={sum(k=1, n\3, (d1^(3*k) + 3*d1^k*d2^k + 2*d3^k))/12}
    C2(n)={sum(k=1, n\3, (d1^(k%2)*d2^(k\2))^3 + 3*d1^(k%2)*d2^(k\2+k) + 2*d3^(k%2)*d6^(k\2))/12}
    seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))} \\ Andrew Howroyd, May 25 2018

Formula

a(n) ~ c * d^n / sqrt(n), where d = 1/A261340 = 2.815460033176150746526616778..., c = 0.0064202170754... . - Vaclav Kotesovec, Sep 08 2019

Extensions

Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(24) corrected and terms a(26) and beyond from Andrew Howroyd, May 25 2018

A244399 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 3.

Original entry on oeis.org

1, 2, 6, 16, 43, 113, 300, 787, 2074, 5460, 14391, 37960, 100275, 265187, 702307, 1862463, 4945952, 13152441, 35023003, 93385548, 249330208, 666539949, 1784102735, 4781254117, 12828545419, 34459732110, 92668129050, 249469906115, 672296028786, 1813606782459
Offset: 4

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 27 2014

Keywords

Crossrefs

Column k=3 of A244372.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> b(n-1$2, 3$2) -`if`(k=0, 0, b(n-1$2, 2$2)):
    seq(a(n), n=4..35);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]//FullSimplify]; a[n_] := b[n-1, n-1, 3, 3] - If[n == 0, 0, b[n-1, n-1, 2, 2]]; Table[a[n], {n, 4, 35}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) = A000598(n) - A001190(n+1) = A000598(n) - A036656(n+1).
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.81546003317615... and c = 0.5178759064... . - Vaclav Kotesovec, Jun 27 2014
Showing 1-4 of 4 results.