cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A244372 Number T(n,k) of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 2, 1, 0, 1, 10, 6, 2, 1, 0, 1, 22, 16, 6, 2, 1, 0, 1, 45, 43, 17, 6, 2, 1, 0, 1, 97, 113, 49, 17, 6, 2, 1, 0, 1, 206, 300, 136, 50, 17, 6, 2, 1, 0, 1, 450, 787, 386, 142, 50, 17, 6, 2, 1, 0, 1, 982, 2074, 1081, 409, 143, 50, 17, 6, 2, 1
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 26 2014

Keywords

Examples

			The A000081(5) = 9 rooted trees with 5 nodes sorted by maximal outdegree are:
:  o  :   o     o     o       o     o   :   o     o   :    o    :
:  |  :   |     |    / \     / \   / \  :   |    /|\  :  /( )\  :
:  o  :   o     o   o   o   o   o o   o :   o   o o o : o o o o :
:  |  :   |    / \  |      / \    |   | :  /|\  |     :         :
:  o  :   o   o   o o     o   o   o   o : o o o o     :         :
:  |  :  / \  |     |                   :             :         :
:  o  : o   o o     o                   :             :         :
:  |  :                                 :             :         :
:  o  :                                 :             :         :
:     :                                 :             :         :
: -1- : ---------------2--------------- : -----3----- : ---4--- :
Thus row 5 = [0, 1, 5, 2, 1].
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,   1;
  0,  1,   2,    1;
  0,  1,   5,    2,    1;
  0,  1,  10,    6,    2,   1;
  0,  1,  22,   16,    6,   2,   1;
  0,  1,  45,   43,   17,   6,   2,  1;
  0,  1,  97,  113,   49,  17,   6,  2,  1;
  0,  1, 206,  300,  136,  50,  17,  6,  2,  1;
  0,  1, 450,  787,  386, 142,  50, 17,  6,  2,  1;
  0,  1, 982, 2074, 1081, 409, 143, 50, 17,  6,  2,  1;
		

Crossrefs

T(2n,n) gives A244407(n).
T(2n+1,n) gives A244410(n).
Row sum give A000081.
Cf. A244454.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    T:= (n, k)-> b(n-1$2, k$2) -`if`(k=0, 0, b(n-1$2, k-1$2)):
    seq(seq(T(n, k), k=0..n-1), n=1..14);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]]; T[n_, k_] := b[n-1, n-1, k, k] - If[k == 0, 0, b[n-1, n-1, k-1, k-1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 01 2014, translated from Maple *)

A261340 Decimal expansion of the radius of convergence of the generating function of A000598, the number of rooted ternary trees of n vertices.

Original entry on oeis.org

3, 5, 5, 1, 8, 1, 7, 4, 2, 3, 1, 4, 3, 7, 7, 3, 9, 2, 8, 8, 2, 2, 4, 4, 4, 7, 3, 6, 4, 7, 6, 3, 2, 6, 3, 6, 7, 0, 8, 7, 4, 6, 9, 5, 4, 1, 7, 5, 3, 2, 2, 1, 3, 4, 2, 3, 8, 1, 2, 9, 4, 9, 9, 7, 1, 2, 8, 0, 0, 1, 8, 0, 5, 7, 5, 5, 5, 7, 8, 2, 8, 8, 6, 7, 9, 8, 1, 3, 8, 1, 0, 8, 2, 4, 1, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Aug 15 2015

Keywords

Examples

			0.35518174231437739288224447364763263670874695417532...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 298.

Crossrefs

Programs

  • Mathematica
    digits = 97; m = 2 digits + 10; For[gf = 0; i = 0, i <= m, i++, gf = Series[1 + x*(gf^3/6 + (gf /. x -> x^2)*gf/2 + (gf /. x -> x^3)/3), {x, 0, m + 1}] // Normal];
    g[r_] := Module[{r2, r3, X, ym}, r2 = gf /. x -> r^2; r3 = gf /. x -> r^3; X[y_] = (y - 1)/(y^3/6 + r2*y/2 + r3/3); ym = y /. FindRoot[X'[y] == 0, {y, 2}, WorkingPrecision -> digits + 5]; X[ym]]; rho = FixedPoint[g, 1/3, SameTest -> (Abs[#1 - #2] < 10^-digits &)]; RealDigits[rho, 10, digits] // First

Extensions

More digits from Vaclav Kotesovec, Aug 15 2015
More digits and Mma code updated by Jean-François Alcover, Apr 18 2016
Showing 1-2 of 2 results.