A112410
Number of connected simple graphs with n vertices, n+1 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 1, 5, 17, 56, 182, 573, 1792, 5533, 16977, 51652, 156291, 470069, 1407264, 4193977, 12451760, 36838994, 108656009, 319583578, 937634011, 2744720126, 8018165821, 23379886511, 68056985580, 197800670948, 574068309840, 1663907364480, 4816910618093, 13929036720057
Offset: 1
The only such graph for n = 4 is:
o-o
|/|
o-o
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671, this sequence,
A112619,
A112408,
A112424,
A112425,
A112426,
A112442.
A305059
Triangle read by rows: T(n,k) is the number of connected unicyclic graphs on n unlabeled nodes with cycle length k and all nodes having degree at most 4.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 15, 8, 4, 1, 1, 33, 24, 9, 5, 1, 1, 83, 55, 28, 12, 5, 1, 1, 196, 147, 71, 40, 13, 6, 1, 1, 491, 365, 198, 106, 47, 16, 6, 1, 1, 1214, 954, 521, 317, 136, 63, 18, 7, 1, 1, 3068, 2431, 1418, 868, 428, 190, 73, 21, 7, 1, 1
Offset: 3
Triangle begins:
1;
1, 1;
3, 1, 1;
6, 4, 1, 1;
15, 8, 4, 1, 1;
33, 24, 9, 5, 1, 1;
83, 55, 28, 12, 5, 1, 1;
196, 147, 71, 40, 13, 6, 1, 1;
491, 365, 198, 106, 47, 16, 6, 1, 1;
1214, 954, 521, 317, 136, 63, 18, 7, 1, 1;
...
-
G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
Table[T[n, k], {n, 3, 13}, {k, 3, n}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
T(n,k)={my(t=G(n)); t=x*(t^2+subst(t, x, x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); polcoeff((sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2, n)}
A112408
Number of connected simple graphs with n vertices, n+3 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 0, 2, 14, 79, 430, 2161, 10162, 45282, 192945, 790849, 3138808, 12116550, 45675153, 168661704, 611701138, 2183635232, 7686541342, 26720976964, 91856241351, 312594121721, 1054104924270
Offset: 1
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671,
A112410,
A112619, this sequence,
A112424,
A112425,
A112426,
A112442. Cf.
A121941.
A112424
Number of connected simple graphs with n vertices, n+4 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 8, 59, 427, 2768, 16461, 90111, 460699, 2222549, 10216607, 45076266, 192059940, 794088479, 3198709835, 12593964702, 48596474890, 184195614359, 687087962550, 2526421534903
Offset: 1
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671,
A112410,
A112619,
A112408, this sequence,
A112425,
A112426,
A112442. Cf.
A121941.
A112425
Number of connected simple graphs with n vertices, n+5 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 31, 298, 2616, 20346, 140605, 880737, 5082279, 27402524, 139587885, 677772953, 3158930531, 14212444473, 62009204208, 263350765116, 1092085621098, 4433596269478
Offset: 1
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671,
A112410,
A112619,
A112408,
A112424, this sequence,
A112426,
A112442. Cf.
A121941.
A112426
Number of connected simple graphs with n vertices, n+6 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 9, 134, 1714, 18436, 167703, 1327240, 9372119, 60324933, 359730035, 2012733260, 10670975762, 54028108819, 262872075003, 1235323112178, 5630370812614
Offset: 1
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671,
A112410,
A112619,
A112408,
A112424,
A112425, this sequence,
A112442. Cf.
A121941.
A112619
Number of connected simple graphs with n vertices, n+2 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 1, 4, 18, 79, 326, 1278, 4875, 17978, 64720, 227842, 787546, 2678207, 8982754, 29761361, 97558039, 316778169, 1019996738, 3259673935, 10347077497, 32644696187, 102425388286, 319754805262
Offset: 1
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671,
A112410, this sequence,
A112408,
A112424,
A112425,
A112426,
A112442. Cf.
A121941.
A112442
Number of connected simple graphs with n vertices, n+7 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 2, 35, 707, 11477, 146428, 1530906, 13663758, 107554370, 764873164, 5004170844, 30537798974, 175688807383, 960958921848, 5030916734826
Offset: 1
The analogs for n+k edges with k = -1, 0, ..., 6 are:
A000602,
A036671,
A112410,
A112619,
A112408,
A112424,
A112425,
A112426. Cf.
A121941.
New name, offset corrected, a(11) corrected, and a(14) added by
Andrey Zabolotskiy, Nov 24 2017
A125064
Number of simple graphs on at most 16 unlabeled vertices with maximal degree at most 4 with a single cycle of length 16-n.
Original entry on oeis.org
1, 2, 11, 39, 169, 534, 1612, 3894, 8771, 16307, 29391, 43291, 69429, 83571
Offset: 0
Showing 1-9 of 9 results.
Comments