cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A063832 Number of structurally isomeric homologs with molecular formula C_{3+n} H_{6+2n}.

Original entry on oeis.org

1, 1, 3, 6, 15, 33, 83, 196, 491, 1214, 3068, 7754, 19834, 50872, 131423, 340763, 887839, 2321193, 6090979, 16031341, 42319223, 112003765, 297164610, 790190726, 2105607907, 5621642203, 15036126167, 40284850520, 108102408101
Offset: 0

Views

Author

Vladeta Jovovic, Aug 21 2001

Keywords

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
  • Ching-Wan Lam, "Enumeration of isomers of alkylcyclopropanes by means of alkyl 1,1-biradicals", J. Math. Chem., 27 (2000), 23-25. [From Parthasarathy Nambi, Aug 24 2008]

Crossrefs

Column k=3 of A305059.
Column 3 of a table (in Parks and Hendrickson) in which the subsequent columns are A116719, A120333, A120779, A120790, A120795, A121156, A121157.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    a[n_] := T[n + 3, 3];
    Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)

Formula

G.f.: A(x) = cycle_index(S3[S2]B(x)), where B(x) is g.f. for A000598.

A116719 Number of monocyclic skeletons with n carbon atoms and a ring size of 4.

Original entry on oeis.org

1, 1, 4, 8, 24, 55, 147, 365, 954, 2431, 6327, 16369, 42743, 111595, 292849, 769805, 2030456, 5366844, 14222475, 37768154, 100510364, 267987501, 715847932, 1915406263, 5133382014, 13778469949, 37035674682, 99683747508, 268647638770, 724879674667, 1958151665752
Offset: 4

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

Examples

			If n=5 then the number of monocyclic skeletons with ring size of four is 1.
		

Crossrefs

Column k=4 of A305059.
Cf. A063832.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    a[n_] := T[n, 4];
    Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)

Extensions

More terms from N. J. A. Sloane, Aug 27 2006
a(5) corrected and terms a(26) and beyond from Andrew Howroyd, May 24 2018

A120333 Number of monocyclic skeletons with n carbon atoms and a ring size of 5.

Original entry on oeis.org

1, 1, 4, 9, 28, 71, 198, 521, 1418, 3773, 10153, 27114, 72705, 194531, 521447, 1397482, 3749836, 10067417, 27057233, 72779710, 195963184, 528127752, 1424707167, 3846943003, 10397057771, 28125235102, 76149287981, 206351312858, 559642013499, 1519019192097
Offset: 5

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

Examples

			If n=10 then the number of monocyclic skeletons with ring size of five is 71.
		

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

Crossrefs

Column k=5 of A305059.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    a[n_] := T[n + 5, 5];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)

Extensions

More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 24 2018

A120779 Number of monocyclic skeletons with n carbon atoms and a ring size of 6.

Original entry on oeis.org

1, 1, 5, 12, 40, 106, 317, 868, 2462, 6778, 18801, 51561, 141583, 386865, 1056815, 2880894, 7850318, 21373466, 58182244, 158342918, 430954506, 1173001715, 3193466631, 8696388412, 23689689323, 64555962710, 175989086913, 479971320862, 1309581740793, 3574715516111
Offset: 6

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

Crossrefs

Column k=6 of A305059.

Extensions

More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 24 2018

A120790 Number of monocyclic skeletons with n carbon atoms and a ring size of 7.

Original entry on oeis.org

1, 1, 5, 13, 47, 136, 428, 1252, 3716, 10708, 30823, 87504, 247438, 694588, 1942866, 5411640, 15034045, 41659417, 115231598, 318231047, 877817312, 2419033683, 6661335192, 18332784221, 50432439047, 138692804603, 381332833730, 1048322091176, 2881742370070
Offset: 7

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

Crossrefs

Column k=7 of A305059.

Extensions

More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 24 2018

A120795 Number of monocyclic skeletons with n carbon atoms and a ring size of 8.

Original entry on oeis.org

1, 1, 6, 16, 63, 190, 631, 1923, 5940, 17706, 52573, 153442, 444935, 1277737, 3648896, 10357898, 29278749, 82435343, 231393069, 647760624, 1809395471, 5044728853, 14043361916, 39042161151, 108423265447, 300823420906, 834004924385, 2310725016923, 6398803186192
Offset: 8

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

Crossrefs

Column k=8 of A305059.

Extensions

More terms from N. J. A. Sloane, Aug 27 2006
Terms a(26) and beyond from Andrew Howroyd, May 24 2018

A121156 Number of monocyclic skeletons with n carbon atoms and a ring size of 9.

Original entry on oeis.org

1, 1, 6, 18, 73, 240, 841, 2714, 8758, 27259, 83847, 252929, 754737, 2225129, 6505344, 18867696, 54384446, 155892016, 444839696, 1264336132, 3581584336, 10116577962, 28505061687, 80146304124, 224929999040, 630259883854, 1763574118096, 4928881367449
Offset: 9

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

Crossrefs

Column k=9 of A305059.

Extensions

Terms a(26) and beyond from Andrew Howroyd, May 24 2018

A121157 Number of monocyclic skeletons with n carbon atoms and a ring size of 10.

Original entry on oeis.org

1, 1, 7, 21, 93, 319, 1170, 3931, 13168, 42365, 134372, 416765, 1275718, 3850137, 11501014, 34025545, 99891325, 291245242, 844287970, 2435145974, 6993264128, 20007298353, 57051831889, 162217819731, 460079126428, 1301975691316, 3677269460008, 10368105592318
Offset: 10

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

Crossrefs

Column k=10 of A305059.

Extensions

Terms a(26) and beyond from Andrew Howroyd, May 24 2018
Showing 1-8 of 8 results.