cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A305059 Triangle read by rows: T(n,k) is the number of connected unicyclic graphs on n unlabeled nodes with cycle length k and all nodes having degree at most 4.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 15, 8, 4, 1, 1, 33, 24, 9, 5, 1, 1, 83, 55, 28, 12, 5, 1, 1, 196, 147, 71, 40, 13, 6, 1, 1, 491, 365, 198, 106, 47, 16, 6, 1, 1, 1214, 954, 521, 317, 136, 63, 18, 7, 1, 1, 3068, 2431, 1418, 868, 428, 190, 73, 21, 7, 1, 1
Offset: 3

Views

Author

Andrew Howroyd, May 24 2018

Keywords

Comments

Equivalently, the number of monocyclic skeletons with n carbon atoms and a ring size of k.

Examples

			Triangle begins:
     1;
     1,   1;
     3,   1,   1;
     6,   4,   1,   1;
    15,   8,   4,   1,   1;
    33,  24,   9,   5,   1,  1;
    83,  55,  28,  12,   5,  1,  1;
   196, 147,  71,  40,  13,  6,  1, 1;
   491, 365, 198, 106,  47, 16,  6, 1, 1;
  1214, 954, 521, 317, 136, 63, 18, 7, 1, 1;
  ...
		

Crossrefs

Row sums are A036671.
Cf. A000598.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    Table[T[n, k], {n, 3, 13}, {k, 3, n}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    T(n,k)={my(t=G(n)); t=x*(t^2+subst(t, x, x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); polcoeff((sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2, n)}

A116719 Number of monocyclic skeletons with n carbon atoms and a ring size of 4.

Original entry on oeis.org

1, 1, 4, 8, 24, 55, 147, 365, 954, 2431, 6327, 16369, 42743, 111595, 292849, 769805, 2030456, 5366844, 14222475, 37768154, 100510364, 267987501, 715847932, 1915406263, 5133382014, 13778469949, 37035674682, 99683747508, 268647638770, 724879674667, 1958151665752
Offset: 4

Views

Author

Parthasarathy Nambi, Aug 13 2006

Keywords

Examples

			If n=5 then the number of monocyclic skeletons with ring size of four is 1.
		

Crossrefs

Column k=4 of A305059.
Cf. A063832.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    a[n_] := T[n, 4];
    Table[a[n], {n, 4, 30}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)

Extensions

More terms from N. J. A. Sloane, Aug 27 2006
a(5) corrected and terms a(26) and beyond from Andrew Howroyd, May 24 2018

A055936 Stereoisomeric homologs with molecular formula C_{3+n} H_{6+2n}.

Original entry on oeis.org

1, 1, 5, 11, 33, 87, 259, 730, 2150, 6278, 18622, 55340, 165857, 498907, 1509012, 4581570, 13967031, 42722777, 131110259, 403527667, 1245358416, 3852965298, 11948207174, 37131355170, 115623660978, 360712069084, 1127276560366
Offset: 0

Views

Author

Vladeta Jovovic, Aug 21 2001

Keywords

References

  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, pp. 63-64.

Crossrefs

Formula

G.f.: A(x) = (B(x)^6 + 3*B(x^2)^3 + 2*B(x^3)^2)/6, where B(x) is g.f. for A000625.
Showing 1-3 of 3 results.