cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305059 Triangle read by rows: T(n,k) is the number of connected unicyclic graphs on n unlabeled nodes with cycle length k and all nodes having degree at most 4.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 15, 8, 4, 1, 1, 33, 24, 9, 5, 1, 1, 83, 55, 28, 12, 5, 1, 1, 196, 147, 71, 40, 13, 6, 1, 1, 491, 365, 198, 106, 47, 16, 6, 1, 1, 1214, 954, 521, 317, 136, 63, 18, 7, 1, 1, 3068, 2431, 1418, 868, 428, 190, 73, 21, 7, 1, 1
Offset: 3

Views

Author

Andrew Howroyd, May 24 2018

Keywords

Comments

Equivalently, the number of monocyclic skeletons with n carbon atoms and a ring size of k.

Examples

			Triangle begins:
     1;
     1,   1;
     3,   1,   1;
     6,   4,   1,   1;
    15,   8,   4,   1,   1;
    33,  24,   9,   5,   1,  1;
    83,  55,  28,  12,   5,  1,  1;
   196, 147,  71,  40,  13,  6,  1, 1;
   491, 365, 198, 106,  47, 16,  6, 1, 1;
  1214, 954, 521, 317, 136, 63, 18, 7, 1, 1;
  ...
		

Crossrefs

Row sums are A036671.
Cf. A000598.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    Table[T[n, k], {n, 3, 13}, {k, 3, n}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    T(n,k)={my(t=G(n)); t=x*(t^2+subst(t, x, x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); polcoeff((sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2, n)}

A063832 Number of structurally isomeric homologs with molecular formula C_{3+n} H_{6+2n}.

Original entry on oeis.org

1, 1, 3, 6, 15, 33, 83, 196, 491, 1214, 3068, 7754, 19834, 50872, 131423, 340763, 887839, 2321193, 6090979, 16031341, 42319223, 112003765, 297164610, 790190726, 2105607907, 5621642203, 15036126167, 40284850520, 108102408101
Offset: 0

Views

Author

Vladeta Jovovic, Aug 21 2001

Keywords

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
  • Ching-Wan Lam, "Enumeration of isomers of alkylcyclopropanes by means of alkyl 1,1-biradicals", J. Math. Chem., 27 (2000), 23-25. [From Parthasarathy Nambi, Aug 24 2008]

Crossrefs

Column k=3 of A305059.
Column 3 of a table (in Parks and Hendrickson) in which the subsequent columns are A116719, A120333, A120779, A120790, A120795, A121156, A121157.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    a[n_] := T[n + 3, 3];
    Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)

Formula

G.f.: A(x) = cycle_index(S3[S2]B(x)), where B(x) is g.f. for A000598.
Showing 1-2 of 2 results.