A125670
Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 1. See the paper by Hendrickson and Parks for details.
Original entry on oeis.org
1, 2, 9, 26, 87, 257, 787, 2322, 6891, 20160, 58939, 171203, 496294, 1433558, 4132744, 11886827, 34133563, 97856500, 280172582, 801174478, 2288600128, 6531205571, 18622839635, 53059229091, 151067980960, 429840337630, 1222335365450, 3474107883033, 9869276762717
Offset: 5
If n=5 then the number of bicyclics when 'alpha' = one is 1.
If n=6 then the number of bicyclics when 'alpha' = one is 2.
If n=7 then the number of bicyclics when 'alpha' = one is 9.
If n=8 then the number of bicyclics when 'alpha' = one is 26.
From _Andrew Howroyd_, May 24 2018: (Start)
Case n = 6: the two cases are a 3-cycle joined to a 4-cycle and a 3-cycle joined to another 3-cycle with a pendant edge.
o---o-----o o---o---o
\ / \ | \ / \ /
o o---o o o---o
(End)
- James B. Hendrickson and Camden A. Parks, "Generation and Enumeration of Carbon Skeletons", J. Chem. Inf. Comput. Sci., vol. 31 (1991), pp. 101-107. See Table VII column 3 on page 104.
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
CycleIndex(n)={(sum(i=1, (n-1)\2-1, sum(j=1, (n-1)\2-i, (j1^(2*(i+j)) + 2*j1^(2*i)*j2^j + j2^(i+j))*(1 + j1)^2)) + sum(k=1, (n-1)\4, 2*(j2^(2*k) + j4^k)*(1 + j2)))/8}
seq(n)={my(t=G(n)); t=x*(t^2+subst(t, x, x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x^n)); Vec(substvec(CycleIndex(n), [j1,j2,j4], [g(1),g(2),g(4)]))} \\ Andrew Howroyd, May 24 2018
A125669
Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 0. See the paper by Hendrickson and Parks for details.
Original entry on oeis.org
1, 4, 20, 76, 288, 1005, 3433, 11324, 36712, 116809, 367076, 1140226, 3510491, 10722708, 32539364, 98178211, 294767639, 881147521, 2623934079, 7787024985, 23039064263, 67977412951, 200072442611, 587532484513, 1721812143140, 5036454320102, 14706743476128
Offset: 6
If n=6 then the number of bicyclics when 'alpha' = zero is 1.
If n=7 then the number of bicyclics when 'alpha' = zero is 4.
If n=8 then the number of bicyclics when 'alpha' = zero is 20.
If n=9 then the number of bicyclics when 'alpha' = zero is 76.
From _Andrew Howroyd_, May 25 2018: (Start)
Case n=7: illustrations of the 4 graphs:
o o o o o o o o---o o o---o
/ \ / \ / \ / \ / / \ / \ / \ / \ \ \
o---o o---o o---o---o---o o---o---o---o o---o---o---o
(End)
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={sum(i=1, n\2-1, sum(j=1, n\2-i, (d1^(2*(i+j)) + 2*d1^(2*i)*d2^j + d2^(i+j))*(1 + d1)^2))/(8*(1-d1))}
C2(n)={sum(k=1, n\4, 2*(d2^(2*k) + d4^k)*(1 + d2))*(1+d1)/(8*(1-d2))}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018
A125671
Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 2. See the paper by Hendrickson and Parks for details.
Original entry on oeis.org
1, 3, 11, 32, 100, 294, 881, 2590, 7639, 22344, 65278, 189832, 550846, 1593558, 4600435, 13251623, 38104280, 109382300, 313543725, 897588156, 2566575323, 7331196543, 20921299025, 59653124923, 169959192844, 483897197563, 1376848221698, 3915320424705, 11128029239672
Offset: 4
If n=5 then the number of bicyclics when 'alpha' = two is 3.
If n=6 then the number of bicyclics when 'alpha' = two is 11.
If n=7 then the number of bicyclics when 'alpha' = two is 32.
If n=8 then the number of bicyclics when 'alpha' = two is 100.
Case n=5: illustration of the 3 graphs:
.
o---o o---o o o
/| | /|\ /|\ |
/ | | / | \ / | \ |
/ | | / | \ / | \|
o---o---o o---o---o o---o---o
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={(sum(k=2, n, (k-1)*d1^k) + sum(k=1, n\2, d2^k))/4}
C2(n)={(sum(k=1, n\2, d2^k) + sum(i=1, n-1, sum(j=1, n-i, d2^(i\2+j\2) * d1^(i%2+j%2))))/4}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018
a(4) prepended and terms a(16) and beyond from
Andrew Howroyd, May 25 2018
A125672
Classification of bicyclics with the parameter 'alpha' having the value of 3. See the paper by Hendrickson and Parks for details.
Original entry on oeis.org
1, 3, 11, 35, 113, 351, 1093, 3348, 10218, 30906, 93005
Offset: 5
If n=5 then the number of bicyclics when 'alpha' = three is 1.
If n=6 then the number of bicyclics when 'alpha' = three is 3.
If n=7 then the number of bicyclics when 'alpha' = three is 11.
If n=8 then the number of bicyclics when 'alpha' = three is 35.
- James B. Hendrickson and Camden A. Parks, "Generation and Enumeration of Carbon Skeletons", J. Chem. Inf. Comput. Sci., vol. 31 (1991), pp. 101-107. See Table VII column 5 on page 104.
A125673
Classification of bicyclics with the parameter 'alpha' having the value of 4. See the paper by Hendrickson and Parks for details.
Original entry on oeis.org
1, 3, 15, 57, 231, 853, 3131, 11007
Offset: 8
If n=8 then the number of bicyclics when 'alpha' = four is 1.
If n=9 then the number of bicyclics when 'alpha' = four is 3.
If n=10 then the number of bicyclics when 'alpha' = four is 15.
If n=11 then the number of bicyclics when 'alpha' = four is 57.
- James B. Hendrickson and Camden A. Parks, "Generation and Enumeration of Carbon Skeletons", J. Chem. Inf. Comput. Sci., vol. 31 (1991), pp. 101-107. See Table VII column 6 on page 104.
Showing 1-5 of 5 results.
Comments