cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A305132 Number of connected graphs on n unlabeled nodes with exactly 2 cycles joined along two or more edges but not more than half each cycle and all nodes having degree at most 4.

Original entry on oeis.org

1, 3, 11, 36, 116, 366, 1151, 3583, 11093, 34141, 104489, 318139, 963899, 2907276, 8731919, 26125538, 77889504, 231466147, 685811867, 2026481941, 5973064855, 17565416721, 51547293439, 150977445294, 441409701444, 1288409915625, 3754926609800, 10927779696264
Offset: 5

Views

Author

Andrew Howroyd, May 26 2018

Keywords

Comments

The resulting graph will actually have three cycles. See A121331 for the special case of all three cycles having the same length.
Equivalently, the number of connected simple graphs with n unlabeled nodes and n + 1 edges and all nodes having degree at most 4 (A112410) less those graphs described by A125669, A125670 and A125671.

Examples

			Illustration of graphs for n=5 and n=6:
    o          o--o       o           o--o
   /|\        /|\        /|\         /|  |
  o o o      o o o      o o o--o    o o  |
   \|/        \|/        \|/         \|  |
    o          o          o           o--o
		

Crossrefs

Programs

  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    C1(n)={subst(Pol(x^3*d1^3/(1-x*d1)^3 + 3*x^3*d1*d2/((1-x*d1)*(1-x^2*d2)) + 2*x^3*d3/(1-x^3*d3) + O(x*x^n)), x, 1)/12}
    C2(n)={subst(Pol(((x*d1+x^2*d2)/(1-x^2*d2))^3 + 3*(x*d1+x^2*d2)*x^2*d2/(1-x^2*d2)^2 + 2*(x^3*d3 + x^6*d6)/(1-x^6*d6) + O(x*x^n)), x, 1)/12}
    seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))}

Formula

a(n) >= A125672(n) + A125673(n).
Showing 1-1 of 1 results.