A112410
Number of connected simple graphs with n vertices, n+1 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 1, 5, 17, 56, 182, 573, 1792, 5533, 16977, 51652, 156291, 470069, 1407264, 4193977, 12451760, 36838994, 108656009, 319583578, 937634011, 2744720126, 8018165821, 23379886511, 68056985580, 197800670948, 574068309840, 1663907364480, 4816910618093, 13929036720057
Offset: 1
The only such graph for n = 4 is:
o-o
|/|
o-o
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671, this sequence,
A112619,
A112408,
A112424,
A112425,
A112426,
A112442.
A121331
Number of bridged bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).
Original entry on oeis.org
1, 2, 6, 15, 39, 99, 258, 671, 1762, 4657, 12372, 33036, 88590, 238483, 644045, 1744542, 4737341, 12894158, 35165994, 96083192, 262951511, 720685274, 1977846334, 5434588909, 14949284828, 41163690109, 113451949753, 312955174089, 863965424349, 2386874582238
Offset: 5
From _Andrew Howroyd_, May 25 2018: (Start)
Illustration of graphs for n=5 and n=6:
o o--o o
/|\ /|\ /|\
o o o o o o o o o--o
\|/ \|/ \|/
o o o
.
Illustration of graphs for n=7:
o--o o--o--o o--o o o o o
/|\ /|\ /|\ /|\ /|\ /|\ /
o o o o o o o o o--o o o o o o o--o o o o
\|/ \|/ \|/ / \|/ \ \|/ | \|/ \
o--o o o o o o o o o o
(End)
-
G[n_] := Module[{g}, g[] = 0; Do[g[x] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
C1[n_] := Sum[(d1^(3*k)+3*d1^k*d2^k + 2*d3^k), {k, 1, Quotient[n, 3]}]/12;
C2[n_] := Sum[(d1^Mod[k, 2]*d2^Quotient[k, 2])^3 + 3*d1^Mod[k, 2]* d2^(Quotient[k, 2] + k) + 2*d3^Mod[k, 2]*d6^Quotient[k, 2], {k, 1, Quotient[n, 3]}]/12;
seq[n_] := Module[{s, d, g}, s = G[n]; d = x*(s^2 + (s /. x -> x^2))/2; g[p_, e_] := Normal[(p+O[x]^(Quotient[n, e]+1))] /. x :> x^e; g[s, 1]^2* (C1[n-2] /. Thread[{d1, d2, d3} :> {g[d, 1], g[d, 2], g[d, 3]}]) + g[s, 2]*(C2[n-2] /. Thread[{d1, d2, d3, d6} :> {g[d, 1], g[d, 2], g[d, 3], g[d, 6]}]) + O[x]^n] // CoefficientList[#, x]& // Drop[#, 3]&;
seq[33] (* Jean-François Alcover, Sep 08 2019, after Andrew Howroyd *)
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={sum(k=1, n\3, (d1^(3*k) + 3*d1^k*d2^k + 2*d3^k))/12}
C2(n)={sum(k=1, n\3, (d1^(k%2)*d2^(k\2))^3 + 3*d1^(k%2)*d2^(k\2+k) + 2*d3^(k%2)*d6^(k\2))/12}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))} \\ Andrew Howroyd, May 25 2018
a(24) corrected and terms a(26) and beyond from
Andrew Howroyd, May 25 2018
Showing 1-2 of 2 results.
Comments