A112410
Number of connected simple graphs with n vertices, n+1 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 1, 5, 17, 56, 182, 573, 1792, 5533, 16977, 51652, 156291, 470069, 1407264, 4193977, 12451760, 36838994, 108656009, 319583578, 937634011, 2744720126, 8018165821, 23379886511, 68056985580, 197800670948, 574068309840, 1663907364480, 4816910618093, 13929036720057
Offset: 1
The only such graph for n = 4 is:
o-o
|/|
o-o
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671, this sequence,
A112619,
A112408,
A112424,
A112425,
A112426,
A112442.
A125669
Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 0. See the paper by Hendrickson and Parks for details.
Original entry on oeis.org
1, 4, 20, 76, 288, 1005, 3433, 11324, 36712, 116809, 367076, 1140226, 3510491, 10722708, 32539364, 98178211, 294767639, 881147521, 2623934079, 7787024985, 23039064263, 67977412951, 200072442611, 587532484513, 1721812143140, 5036454320102, 14706743476128
Offset: 6
If n=6 then the number of bicyclics when 'alpha' = zero is 1.
If n=7 then the number of bicyclics when 'alpha' = zero is 4.
If n=8 then the number of bicyclics when 'alpha' = zero is 20.
If n=9 then the number of bicyclics when 'alpha' = zero is 76.
From _Andrew Howroyd_, May 25 2018: (Start)
Case n=7: illustrations of the 4 graphs:
o o o o o o o o---o o o---o
/ \ / \ / \ / \ / / \ / \ / \ / \ \ \
o---o o---o o---o---o---o o---o---o---o o---o---o---o
(End)
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={sum(i=1, n\2-1, sum(j=1, n\2-i, (d1^(2*(i+j)) + 2*d1^(2*i)*d2^j + d2^(i+j))*(1 + d1)^2))/(8*(1-d1))}
C2(n)={sum(k=1, n\4, 2*(d2^(2*k) + d4^k)*(1 + d2))*(1+d1)/(8*(1-d2))}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018
A125671
Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 2. See the paper by Hendrickson and Parks for details.
Original entry on oeis.org
1, 3, 11, 32, 100, 294, 881, 2590, 7639, 22344, 65278, 189832, 550846, 1593558, 4600435, 13251623, 38104280, 109382300, 313543725, 897588156, 2566575323, 7331196543, 20921299025, 59653124923, 169959192844, 483897197563, 1376848221698, 3915320424705, 11128029239672
Offset: 4
If n=5 then the number of bicyclics when 'alpha' = two is 3.
If n=6 then the number of bicyclics when 'alpha' = two is 11.
If n=7 then the number of bicyclics when 'alpha' = two is 32.
If n=8 then the number of bicyclics when 'alpha' = two is 100.
Case n=5: illustration of the 3 graphs:
.
o---o o---o o o
/| | /|\ /|\ |
/ | | / | \ / | \ |
/ | | / | \ / | \|
o---o---o o---o---o o---o---o
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={(sum(k=2, n, (k-1)*d1^k) + sum(k=1, n\2, d2^k))/4}
C2(n)={(sum(k=1, n\2, d2^k) + sum(i=1, n-1, sum(j=1, n-i, d2^(i\2+j\2) * d1^(i%2+j%2))))/4}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018
a(4) prepended and terms a(16) and beyond from
Andrew Howroyd, May 25 2018
A305132
Number of connected graphs on n unlabeled nodes with exactly 2 cycles joined along two or more edges but not more than half each cycle and all nodes having degree at most 4.
Original entry on oeis.org
1, 3, 11, 36, 116, 366, 1151, 3583, 11093, 34141, 104489, 318139, 963899, 2907276, 8731919, 26125538, 77889504, 231466147, 685811867, 2026481941, 5973064855, 17565416721, 51547293439, 150977445294, 441409701444, 1288409915625, 3754926609800, 10927779696264
Offset: 5
Illustration of graphs for n=5 and n=6:
o o--o o o--o
/|\ /|\ /|\ /| |
o o o o o o o o o--o o o |
\|/ \|/ \|/ \| |
o o o o--o
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={subst(Pol(x^3*d1^3/(1-x*d1)^3 + 3*x^3*d1*d2/((1-x*d1)*(1-x^2*d2)) + 2*x^3*d3/(1-x^3*d3) + O(x*x^n)), x, 1)/12}
C2(n)={subst(Pol(((x*d1+x^2*d2)/(1-x^2*d2))^3 + 3*(x*d1+x^2*d2)*x^2*d2/(1-x^2*d2)^2 + 2*(x^3*d3 + x^6*d6)/(1-x^6*d6) + O(x*x^n)), x, 1)/12}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))}
Showing 1-4 of 4 results.
Comments