A112410
Number of connected simple graphs with n vertices, n+1 edges, and vertex degrees no more than 4.
Original entry on oeis.org
0, 0, 0, 1, 5, 17, 56, 182, 573, 1792, 5533, 16977, 51652, 156291, 470069, 1407264, 4193977, 12451760, 36838994, 108656009, 319583578, 937634011, 2744720126, 8018165821, 23379886511, 68056985580, 197800670948, 574068309840, 1663907364480, 4816910618093, 13929036720057
Offset: 1
The only such graph for n = 4 is:
o-o
|/|
o-o
The analogs for n+k edges with k = -1, 0, ..., 7 are:
A000602,
A036671, this sequence,
A112619,
A112408,
A112424,
A112425,
A112426,
A112442.
A121165
Number of fused bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).
Original entry on oeis.org
1, 2, 7, 15, 44, 107, 295, 763, 2077, 5533, 15053, 40697, 111028, 302583, 828176, 2267939, 6225340, 17103834, 47062513, 129616014, 357364708, 986110340, 2723373330, 7526669582, 20816208417, 57606623093, 159514679011, 441942381946, 1225049208597, 3397418545998
Offset: 4
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={sum(k=1, n\2, d1^(2*k) + d2^k)/4}
C2(n)={sum(k=1, n\2, d2^k + d2^(k-k%2)*d1^(2*(k%2)))/4}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018
A305132
Number of connected graphs on n unlabeled nodes with exactly 2 cycles joined along two or more edges but not more than half each cycle and all nodes having degree at most 4.
Original entry on oeis.org
1, 3, 11, 36, 116, 366, 1151, 3583, 11093, 34141, 104489, 318139, 963899, 2907276, 8731919, 26125538, 77889504, 231466147, 685811867, 2026481941, 5973064855, 17565416721, 51547293439, 150977445294, 441409701444, 1288409915625, 3754926609800, 10927779696264
Offset: 5
Illustration of graphs for n=5 and n=6:
o o--o o o--o
/|\ /|\ /|\ /| |
o o o o o o o o o--o o o |
\|/ \|/ \|/ \| |
o o o o--o
-
\\ here G is A000598 as series
G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
C1(n)={subst(Pol(x^3*d1^3/(1-x*d1)^3 + 3*x^3*d1*d2/((1-x*d1)*(1-x^2*d2)) + 2*x^3*d3/(1-x^3*d3) + O(x*x^n)), x, 1)/12}
C2(n)={subst(Pol(((x*d1+x^2*d2)/(1-x^2*d2))^3 + 3*(x*d1+x^2*d2)*x^2*d2/(1-x^2*d2)^2 + 2*(x^3*d3 + x^6*d6)/(1-x^6*d6) + O(x*x^n)), x, 1)/12}
seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))}
Showing 1-3 of 3 results.
Comments