cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A121331 Number of bridged bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).

Original entry on oeis.org

1, 2, 6, 15, 39, 99, 258, 671, 1762, 4657, 12372, 33036, 88590, 238483, 644045, 1744542, 4737341, 12894158, 35165994, 96083192, 262951511, 720685274, 1977846334, 5434588909, 14949284828, 41163690109, 113451949753, 312955174089, 863965424349, 2386874582238
Offset: 5

Views

Author

N. J. A. Sloane, Aug 27 2006

Keywords

Comments

Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of the same even length joined along half their length and all nodes having degree at most 4. The resulting graph will have three equal length cycles. - Andrew Howroyd, May 25 2018

Examples

			From _Andrew Howroyd_, May 25 2018: (Start)
Illustration of graphs for n=5 and n=6:
    o          o--o       o
   /|\        /|\        /|\
  o o o      o o o      o o o--o
   \|/        \|/        \|/
    o          o          o
.
Illustration of graphs for n=7:
    o--o      o--o--o   o--o        o        o          o   o
   /|\       /|\       /|\         /|\      /|\        /|\ /
  o o o     o o o     o o o--o    o o o    o o o--o   o o o
   \|/       \|/       \|/       / \|/ \    \|/   |    \|/ \
    o--o      o         o       o   o   o    o    o     o   o
(End)
		

Crossrefs

Programs

  • Mathematica
    G[n_] := Module[{g}, g[] = 0; Do[g[x] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    C1[n_] := Sum[(d1^(3*k)+3*d1^k*d2^k + 2*d3^k), {k, 1, Quotient[n, 3]}]/12;
    C2[n_] := Sum[(d1^Mod[k, 2]*d2^Quotient[k, 2])^3 + 3*d1^Mod[k, 2]* d2^(Quotient[k, 2] + k) + 2*d3^Mod[k, 2]*d6^Quotient[k, 2], {k, 1, Quotient[n, 3]}]/12;
    seq[n_] := Module[{s, d, g}, s = G[n]; d = x*(s^2 + (s /. x -> x^2))/2; g[p_, e_] := Normal[(p+O[x]^(Quotient[n, e]+1))] /. x :> x^e; g[s, 1]^2* (C1[n-2] /. Thread[{d1, d2, d3} :> {g[d, 1], g[d, 2], g[d, 3]}]) + g[s, 2]*(C2[n-2] /. Thread[{d1, d2, d3, d6} :> {g[d, 1], g[d, 2], g[d, 3], g[d, 6]}]) + O[x]^n] // CoefficientList[#, x]& // Drop[#, 3]&;
    seq[33] (* Jean-François Alcover, Sep 08 2019, after Andrew Howroyd *)
  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    C1(n)={sum(k=1, n\3, (d1^(3*k) + 3*d1^k*d2^k + 2*d3^k))/12}
    C2(n)={sum(k=1, n\3, (d1^(k%2)*d2^(k\2))^3 + 3*d1^(k%2)*d2^(k\2+k) + 2*d3^(k%2)*d6^(k\2))/12}
    seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))} \\ Andrew Howroyd, May 25 2018

Formula

a(n) ~ c * d^n / sqrt(n), where d = 1/A261340 = 2.815460033176150746526616778..., c = 0.0064202170754... . - Vaclav Kotesovec, Sep 08 2019

Extensions

Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(24) corrected and terms a(26) and beyond from Andrew Howroyd, May 25 2018

A125671 Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 2. See the paper by Hendrickson and Parks for details.

Original entry on oeis.org

1, 3, 11, 32, 100, 294, 881, 2590, 7639, 22344, 65278, 189832, 550846, 1593558, 4600435, 13251623, 38104280, 109382300, 313543725, 897588156, 2566575323, 7331196543, 20921299025, 59653124923, 169959192844, 483897197563, 1376848221698, 3915320424705, 11128029239672
Offset: 4

Views

Author

Parthasarathy Nambi, Jan 29 2007

Keywords

Comments

Here 'alpha' is the number of atoms the two rings have in common.
Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles joined at a single edge and all nodes having degree at most 4. See A121165 for the special case of the two cycles having the same length. - Andrew Howroyd, May 25 2018

Examples

			If n=5 then the number of bicyclics when 'alpha' = two is 3.
If n=6 then the number of bicyclics when 'alpha' = two is 11.
If n=7 then the number of bicyclics when 'alpha' = two is 32.
If n=8 then the number of bicyclics when 'alpha' = two is 100.
Case n=5: illustration of the 3 graphs:
.
       o---o        o---o       o   o
      /|   |       /|\         /|\  |
     / |   |      / | \       / | \ |
    /  |   |     /  |  \     /  |  \|
   o---o---o    o---o---o   o---o---o
		

Crossrefs

Programs

  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    C1(n)={(sum(k=2, n, (k-1)*d1^k) + sum(k=1, n\2, d2^k))/4}
    C2(n)={(sum(k=1, n\2, d2^k) + sum(i=1, n-1, sum(j=1, n-i, d2^(i\2+j\2) * d1^(i%2+j%2))))/4}
    seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018

Extensions

a(4) prepended and terms a(16) and beyond from Andrew Howroyd, May 25 2018
Showing 1-2 of 2 results.