cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381216 Number of isomers of C_n H_{2n+2} O_2.

Original entry on oeis.org

1, 2, 5, 11, 28, 69, 179, 463, 1225, 3246, 8697, 23366, 63137, 171051, 465002, 1266831, 3459262, 9462393, 25926939, 71139400, 195451500, 537608802, 1480316960, 4079977874, 11254956840, 31072771980, 85850016944, 237356027117, 656657132953, 1817758531055, 5034725293449
Offset: 0

Views

Author

Erich Friedman, Feb 17 2025

Keywords

Examples

			a(2)=5 because the following compounds are possible:
     | |       |   |       | |       |     |       |
-O-O-C-C-   -O-C-O-C-   -O-C-C-O-   -C-O-O-C-   -O-C-O-
     | |       |   |       | |       |     |       |
                                                  -C-
                                                   |
		

Crossrefs

Programs

  • PARI
    \\ here R(n) gives g.f. of A000598.
    R(n)={my(g=O(x)); for(n=0, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x*x^n)); g}
    seq(n)={my(A=O(x*x^n), p=R(n), p2=subst(p,x,x^2) + A, q=(p^2+p2)/2, q2=subst(q,x,x^2) + A); Vec((p^2/(1 - x^2*q^2) + p2/(1 - x^2*q2))*(1 + x*q)/2)} \\ Andrew Howroyd, Feb 17 2025

Extensions

a(10) onwards from Andrew Howroyd, Feb 17 2025

A000634 Number of glycols with n carbon atoms.

Original entry on oeis.org

1, 2, 6, 14, 38, 97, 260, 688, 1856, 4994, 13550, 36791, 100302, 273824, 749316, 2053247, 5635266, 15484532, 42599485, 117312742, 323373356, 892139389, 2463252315, 6806148956, 18818714543, 52065725034, 144135111504, 399232819042, 1106385615943
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000636(n) - A000642(n). - Sean A. Irvine, Nov 18 2016

Extensions

More terms from Sean A. Irvine, Nov 18 2016
Showing 1-2 of 2 results.