A000697 Boustrophedon transform of 1, 1, 4, 9, 16, ...
1, 2, 7, 26, 89, 316, 1243, 5564, 28321, 162160, 1032051, 7226636, 55206161, 456886912, 4072080587, 38885496092, 396084390849, 4286637591872, 49121248360291, 594159600856332, 7565074996215025, 101137602761945440
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000697 n = sum $ zipWith (*) (a109449_row n) (1 : tail a000290_list) -- Reinhard Zumkeller, Nov 04 2013
-
Mathematica
t[n_, 0] := If[n==0, 1, n^2]; t[n_, k_] := t[n, k] = t[n, k-1]+t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import accumulate, count, islice def A000697_gen(): # generator of terms yield 1 blist, m = (1,), 1 for i in count(1): yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1] m += 2*i+1 A000697_list = list(islice(A000697_gen(),40)) # Chai Wah Wu, Jun 12 2022
Formula
E.g.f.: (1 + exp(x)*x*(1 + x))*(sec(x) + tan(x)). - Sergei N. Gladkovskii, Oct 29 2014
a(n) ~ n! * (4 + exp(Pi/2)*Pi*(2 + Pi)) * 2^n / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015