cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000710 Number of partitions of n, with two kinds of 1, 2, 3 and 4.

Original entry on oeis.org

1, 2, 5, 10, 20, 35, 62, 102, 167, 262, 407, 614, 919, 1345, 1952, 2788, 3950, 5524, 7671, 10540, 14388, 19470, 26190, 34968, 46439, 61275, 80455, 105047, 136541, 176593, 227460, 291673, 372605, 474085, 601105, 759380, 956249, 1200143, 1501749, 1873407
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of 2*n+4 with exactly 4 odd parts. - Vladeta Jovovic, Jan 12 2005
Convolution of A000041 and A001400. - Vaclav Kotesovec, Aug 18 2015
Also the sum of binomial (D(p), 4) over partitions p of n+10, where D(p) is the number of different part sizes in p. - Emily Anible, Jun 09 2018

Examples

			a(2) = 5 because we have 2, 2', 1+1, 1+1', 1'+1'.
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000712.
Fifth column of Riordan triangle A008951 and of triangle A103923.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5,2,1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[If[#<5, 2, 1]&]; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3)(1-x^4))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@4], {n,0,39}] (* Robert Price, Jul 28 2020 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 10, 4];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)

Formula

Euler transform of 2 2 2 2 1 1 1...
G.f.: 1/((1-x)(1-x^2)(1-x^3)(1-x^4)*Product_{k>=1} (1-x^k)).
a(n) = Sum_{j=0..floor(n/4)} A000098(n-4*j), n >= 0.
a(n) ~ sqrt(3)*n * exp(Pi*sqrt(2*n/3)) / (8*Pi^4). - Vaclav Kotesovec, Aug 18 2015

Extensions

Edited by Emeric Deutsch, Mar 22 2005