cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000711 Number of partitions of n, with three kinds of 1,2,3 and 4 and two kinds of 5,6,7,...

Original entry on oeis.org

1, 3, 9, 22, 51, 107, 217, 416, 775, 1393, 2446, 4185, 7028, 11569, 18749, 29908, 47083, 73157, 112396, 170783, 256972, 383003, 565961, 829410, 1206282, 1741592, 2497425, 3557957, 5037936, 7091711, 9927583, 13823626, 19151731, 26404879, 36236988, 49509149
Offset: 0

Views

Author

Keywords

Comments

Convolution of A000712 and A001400. - Vaclav Kotesovec, Aug 18 2015

Examples

			a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add (add (d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5,3,2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    nn=31;CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/Product[(1-x^i)^2,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)

Formula

EULER transform of 3, 3, 3, 3, 2, 2, 2, 2, ...
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*Product_{k>=1} (1 - x^k)^2).
a(n) ~ exp(2*Pi*sqrt(n/3)) * 3^(1/4) * n^(3/4) / (32*Pi^4). - Vaclav Kotesovec, Aug 18 2015

Extensions

Extended with formula from Christian G. Bower, Apr 15 1998
Edited by Emeric Deutsch, Mar 22 2005