A000715 Number of partitions of n, with three kinds of 1,2 and 3 and two kinds of 4,5,6,....
1, 3, 9, 22, 50, 104, 208, 394, 724, 1286, 2229, 3769, 6253, 10176, 16303, 25723, 40055, 61588, 93647, 140875, 209889, 309846, 453565, 658627, 949310, 1358589, 1931464, 2728547, 3831654, 5350119, 7430158, 10265669, 14113795, 19313168, 26309405, 35685523
Offset: 0
Keywords
Examples
a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Transforms
Programs
-
Maple
g:=1/((1-x)*(1-x^2)*(1-x^3)*product((1-x^k)^2,k=1..40)): gser:=series(g,x=0,40): seq(coeff(gser,x,n),n=0..31); # Emeric Deutsch, Apr 17 2006 # second Maple program a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*`if`(d<4, 3, 2), d=numtheory [divisors](j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..50); # Alois P. Heinz, Sep 25 2012
-
Mathematica
nn=25;p=Product[1/(1- x^i)^2,{i,1,nn}];CoefficientList[Series[p /(1-x)/(1-x^2)/(1-x^3),{x,0,nn}],x] (* Geoffrey Critzer, Sep 25 2012 *)
Formula
EULER transform of 3, 3, 3, 2, 2, 2, 2, 2, ...
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*Product_{k>=1}(1-x^k)^2). - Emeric Deutsch, Apr 17 2006
a(n) ~ exp(2*Pi*sqrt(n/3)) * n^(1/4) / (8 * 3^(1/4) * Pi^3). - Vaclav Kotesovec, Aug 18 2015
Extensions
Extended with formula from Christian G. Bower, Apr 15 1998
Comments