A000733 Boustrophedon transform of partition numbers 1, 1, 1, 2, 3, 5, 7, ...
1, 2, 4, 10, 30, 101, 394, 1760, 8970, 51368, 326991, 2289669, 17491625, 144760655, 1290204758, 12320541392, 125496010615, 1358185050788, 15563654383395, 188254471337718, 2396930376564860, 32044598671291610
Offset: 0
Keywords
Examples
The array begins: 1 1 -> 2 4 <- 3 <- 1 2 -> 6 -> 9 -> 10 30 <- 28 <- 22 <- 13 <- 3 - _John Cerkan_, Jan 26 2017
Links
- John Cerkan, Table of n, a(n) for n = 0..482
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000733 n = sum $ zipWith (*) (a109449_row n) (1 : a000041_list) -- Reinhard Zumkeller, Nov 04 2013
-
Mathematica
t[n_, 0] := If[n == 0, 1, PartitionsP[n-1]]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import count, accumulate, islice from sympy import npartitions def A000733_gen(): # generator of terms yield 1 blist = (1,) for i in count(0): yield (blist := tuple(accumulate(reversed(blist),initial=npartitions(i))))[-1] A000733_list = list(islice(A000733_gen(),40)) # Chai Wah Wu, Jun 12 2022