cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000737 Boustrophedon transform of natural numbers, cf. A000027.

Original entry on oeis.org

1, 3, 8, 21, 60, 197, 756, 3367, 17136, 98153, 624804, 4375283, 33424512, 276622829, 2465449252, 23543304919, 239810132288, 2595353815825, 29740563986500, 359735190398875, 4580290700420064, 61233976084442741
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A231179.

Programs

  • Haskell
    a000737 n = sum $ zipWith (*) (a109449_row n) [1..]
    -- Reinhard Zumkeller, Nov 05 2013
    
  • Mathematica
    CoefficientList[Series[(1+x)*(Tan[x]+1/Cos[x])* E^x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
    t[n_, 0] := n + 1; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import count, accumulate, islice
    def A000737_gen(): # generator of terms
        blist = tuple()
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1]
    A000737_list = list(islice(A000737_gen(),40)) # Chai Wah Wu, Jun 12 2022
  • Sage
    # Algorithm of L. Seidel (1877)
    def A000737_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(n) :
            Am = i+1
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            # To trace the algorithm remove the comment sign.
            # print([A[z] for z in (-i//2..i//2)])
            R.append(A[e*i//2])
        return R
    A000737_list(10) # Peter Luschny, Jun 02 2012
    

Formula

E.g.f.: (1 + x)*(tan x + sec x)*exp(x).
a(n) ~ n! * (Pi + 2)*exp(Pi/2)*2^(n+1)/Pi^(n+1). - Vaclav Kotesovec, Oct 02 2013