A000737 Boustrophedon transform of natural numbers, cf. A000027.
1, 3, 8, 21, 60, 197, 756, 3367, 17136, 98153, 624804, 4375283, 33424512, 276622829, 2465449252, 23543304919, 239810132288, 2595353815825, 29740563986500, 359735190398875, 4580290700420064, 61233976084442741
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
Crossrefs
Cf. A231179.
Programs
-
Haskell
a000737 n = sum $ zipWith (*) (a109449_row n) [1..] -- Reinhard Zumkeller, Nov 05 2013
-
Mathematica
CoefficientList[Series[(1+x)*(Tan[x]+1/Cos[x])* E^x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *) t[n_, 0] := n + 1; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import count, accumulate, islice def A000737_gen(): # generator of terms blist = tuple() for i in count(1): yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1] A000737_list = list(islice(A000737_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
Sage
# Algorithm of L. Seidel (1877) def A000737_list(n) : R = []; A = {-1:0, 0:0} k = 0; e = 1 for i in range(n) : Am = i+1 A[k + e] = 0 e = -e for j in (0..i) : Am += A[k] A[k] = Am k += e # To trace the algorithm remove the comment sign. # print([A[z] for z in (-i//2..i//2)]) R.append(A[e*i//2]) return R A000737_list(10) # Peter Luschny, Jun 02 2012
Formula
E.g.f.: (1 + x)*(tan x + sec x)*exp(x).
a(n) ~ n! * (Pi + 2)*exp(Pi/2)*2^(n+1)/Pi^(n+1). - Vaclav Kotesovec, Oct 02 2013