A000738 Boustrophedon transform (first version) of Fibonacci numbers 0,1,1,2,3,...
0, 1, 3, 8, 25, 85, 334, 1497, 7635, 43738, 278415, 1949531, 14893000, 123254221, 1098523231, 10490117340, 106851450165, 1156403632189, 13251409502982, 160286076269309, 2040825708462175, 27283829950774822, 382127363497453243, 5595206208670390323
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000738 n = sum $ zipWith (*) (a109449_row n) a000045_list -- Reinhard Zumkeller, Nov 03 2013
-
Maple
read(transforms); with(combinat): F:=fibonacci; [seq(F(n),n=0..50)]; BOUS2(%);
-
Mathematica
FullSimplify[CoefficientList[Series[(2/Sqrt[5]) * E^(x/2) * (E^(Sqrt[5]/2*x)/2 - E^(-Sqrt[5]/2*x)/2) * (Sin[x]+1) / Cos[x], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec after Alois P. Heinz, Oct 05 2013 *) t[n_, 0] := Fibonacci[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import islice, accumulate def A000738_gen(): # generator of terms blist, a, b = tuple(), 0, 1 while True: yield (blist := tuple(accumulate(reversed(blist),initial=a)))[-1] a, b = b, a+b A000738_list = list(islice(A000738_gen(),30)) # Chai Wah Wu, Jun 11 2022
Formula
E.g.f.: (2/sqrt(5)) * exp(x/2) * sinh((sqrt(5)/2)*x) * (sin(x)+1) / cos(x). - Alois P. Heinz, Feb 08 2011
a(n) ~ 4*(exp(sqrt(5)*Pi/2)-1) * (2*n/Pi)^(n+1/2) * exp(Pi/4-n-sqrt(5)*Pi/4) / sqrt(5). - Vaclav Kotesovec, Oct 05 2013
Extensions
Entry revised by N. J. A. Sloane, Mar 16 2011