cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000751 Boustrophedon transform of partition numbers.

Original entry on oeis.org

1, 2, 5, 14, 42, 143, 555, 2485, 12649, 72463, 461207, 3229622, 24671899, 204185616, 1819837153, 17378165240, 177012514388, 1915724368181, 21952583954117, 265533531724484, 3380877926676504, 45199008472762756
Offset: 0

Views

Author

Keywords

Examples

			The array begins:
                   1
               1  ->   2
           5  <-   4  <-   2
       3  ->   8  ->  12  ->  14
  42  <-  39  <-  31  <-  19  <-   5
- _John Cerkan_, Jan 26 2017
		

Crossrefs

Programs

  • Haskell
    a000751 n = sum $ zipWith (*) (a109449_row n) a000041_list
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    t[n_, 0] := PartitionsP[n]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
  • Python
    from itertools import accumulate, count, islice
    from sympy import npartitions
    def A000751_gen(): # generator of terms
        blist = tuple()
        for i in count(0):
            yield (blist := tuple(accumulate(reversed(blist),initial=npartitions(i))))[-1]
    A000751_list = list(islice(A000751_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000041(k). - Reinhard Zumkeller, Nov 03 2013