A000751 Boustrophedon transform of partition numbers.
1, 2, 5, 14, 42, 143, 555, 2485, 12649, 72463, 461207, 3229622, 24671899, 204185616, 1819837153, 17378165240, 177012514388, 1915724368181, 21952583954117, 265533531724484, 3380877926676504, 45199008472762756
Offset: 0
Keywords
Examples
The array begins: 1 1 -> 2 5 <- 4 <- 2 3 -> 8 -> 12 -> 14 42 <- 39 <- 31 <- 19 <- 5 - _John Cerkan_, Jan 26 2017
Links
- John Cerkan, Table of n, a(n) for n = 0..482
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms
- Wikipedia, Boustrophedon_transform
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000751 n = sum $ zipWith (*) (a109449_row n) a000041_list -- Reinhard Zumkeller, Nov 03 2013
-
Mathematica
t[n_, 0] := PartitionsP[n]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
Python
from itertools import accumulate, count, islice from sympy import npartitions def A000751_gen(): # generator of terms blist = tuple() for i in count(0): yield (blist := tuple(accumulate(reversed(blist),initial=npartitions(i))))[-1] A000751_list = list(islice(A000751_gen(),40)) # Chai Wah Wu, Jun 12 2022