cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000752 Boustrophedon transform of powers of 2.

Original entry on oeis.org

1, 3, 9, 28, 93, 338, 1369, 6238, 31993, 183618, 1169229, 8187598, 62545893, 517622498, 4613366689, 44054301358, 448733127793, 4856429646978, 55650582121749, 673136951045518, 8570645832753693, 114581094529057058, 1604780986816602409, 23497612049668468078
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=2 of A292975.

Programs

  • Haskell
    a000752 n = sum $ zipWith (*) (a109449_row n) a000079_list
    -- Reinhard Zumkeller, Nov 03 2013
    
  • Mathematica
    t[n_, 0] := 2^n; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x](Tan[ x]+Sec[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Dec 15 2018 *)
  • Python
    from itertools import accumulate, islice
    def A000752_gen(): # generator of terms
        blist, m = tuple(), 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1]
            m *= 2
    A000752_list = list(islice(A000752_gen(),40)) # Chai Wah Wu, Jun 12 2022

Formula

E.g.f.: exp(2*x) (tan(x) + sec(x)).
a(n) = Sum_{k=0..n} A109449(n,k)*2^k. - Reinhard Zumkeller, Nov 03 2013
G.f.: E(0)*x/(1 - 2*x)/(1 - 3*x) + 1/(1 - 2*x), where E(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(x*(k+3) - 1)*(x*(k+4) -1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2014
a(n) ~ n! * exp(Pi) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015