cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000770 Stirling numbers of the second kind, S(n,6).

Original entry on oeis.org

1, 21, 266, 2646, 22827, 179487, 1323652, 9321312, 63436373, 420693273, 2734926558, 17505749898, 110687251039, 693081601779, 4306078895384, 26585679462804, 163305339345225, 998969857983405, 6090236036084530, 37026417000002430, 224595186974125331
Offset: 6

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)= A008277(n, 6) (Stirling2 triangle).
Cf. A008277.

Programs

  • Maple
    A000770:=1/(z-1)/(6*z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[1/720 * (6^n - 6 * 5^n + 15 * 4^n - 20 * 3^n + 15 * 2^n - 6), {n, 6, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
    StirlingS2[Range[6, 25], 6] (* Alonso del Arte, Dec 07 2014 *)

Formula

G.f.: x^6/product(1 - k*x, k = 1..6).
E.g.f.: ((exp(x) - 1)^6)/6!.
a(n) = 1/720*(6^n - 6*5^n + 15*4^n - 20*3^n + 15*2^n - 6). - Vaclav Kotesovec, Nov 19 2012
a(n) = det(|s(i+6,j+5)|, 1 <= i,j <= n-6), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013