A000770 Stirling numbers of the second kind, S(n,6).
1, 21, 266, 2646, 22827, 179487, 1323652, 9321312, 63436373, 420693273, 2734926558, 17505749898, 110687251039, 693081601779, 4306078895384, 26585679462804, 163305339345225, 998969857983405, 6090236036084530, 37026417000002430, 224595186974125331
Offset: 6
Keywords
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=6..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 349
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Programs
-
Maple
A000770:=1/(z-1)/(6*z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[1/720 * (6^n - 6 * 5^n + 15 * 4^n - 20 * 3^n + 15 * 2^n - 6), {n, 6, 20}] (* Vaclav Kotesovec, Nov 19 2012 *) StirlingS2[Range[6, 25], 6] (* Alonso del Arte, Dec 07 2014 *)
Formula
G.f.: x^6/product(1 - k*x, k = 1..6).
E.g.f.: ((exp(x) - 1)^6)/6!.
a(n) = 1/720*(6^n - 6*5^n + 15*4^n - 20*3^n + 15*2^n - 6). - Vaclav Kotesovec, Nov 19 2012
a(n) = det(|s(i+6,j+5)|, 1 <= i,j <= n-6), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013