cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000790 Primary pretenders: least composite c such that n^c == n (mod c).

Original entry on oeis.org

4, 4, 341, 6, 4, 4, 6, 6, 4, 4, 6, 10, 4, 4, 14, 6, 4, 4, 6, 6, 4, 4, 6, 22, 4, 4, 9, 6, 4, 4, 6, 6, 4, 4, 6, 9, 4, 4, 38, 6, 4, 4, 6, 6, 4, 4, 6, 46, 4, 4, 10, 6, 4, 4, 6, 6, 4, 4, 6, 15, 4, 4, 9, 6, 4, 4, 6, 6, 4, 4, 6, 9, 4, 4, 15, 6, 4, 4, 6, 6, 4, 4, 6, 21, 4, 4, 10, 6, 4
Offset: 0

Views

Author

Keywords

Comments

It is remarkable that this sequence is periodic with period 19568584333460072587245340037736278982017213829337604336734362\ 294738647777395483196097971852999259921329236506842360439300 = 2^2 * 3^2 * 5^2 * 7^2 * 11^2 * 13^2 * 17^2 * 19^2 * 23^2 * 29 * 31 * 37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97 * 101 * 103 * 107 * 109 * 113 * 127 * 131 * 137 * 139 * 149 * 151 * 157 * 163 * 167 * 173 * 179 * 181 * 191 * 193 * 197 * 199 * 211 * 223 * 227 * 229 * 233 * 239 * 241 * 251 * 257 * 263 * 269 * 271 * 277.
Note that the period is 277# * 23# (where as usual # is the primorial). - Charles R Greathouse IV, Feb 23 2014
Records are 4, 341, 382 & 561, and they occur at indices of 0, 2, 383 & 10103. - Robert G. Wilson v, Feb 22 2014
Andrzej Schinzel (1961) proved that a(n) > 6 if and only if n == {2, 11} (mod 12). - Thomas Ordowski and Krzysztof Ziemak, Jan 21 2018
We have a(n) <= A090086(n), with equality iff gcd(a(n),n) = 1. - Thomas Ordowski, Feb 13 2018
Sequence b(n) = gcd(a(n), n) is also periodic with period P = 23# * 277#, because this is the LCM of all terms, cf. A108574. - M. F. Hasler, Feb 16 2018

Examples

			a(2) = 341 because 2^341 == 2 (mod 341) and there is no smaller composite number c such that 2^c == 2 (mod c).
a(3) = 6 because 3^6 == 3 (mod 6) (whereas 3^4 == 1 (mod 4)).
		

Crossrefs

Cf. A108574 (all values occurring in this sequence).
Cf. A002808, A090086, A295997 (it has the same set of distinct terms).

Programs

  • Haskell
    import Math.NumberTheory.Moduli (powerMod)
    a000790 n = head [c | c <- a002808_list, powerMod n c c == mod n c]
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Maple
    f:= proc(n) local c;
      for c from 4 do
        if not isprime(c) and n &^ c - n mod c = 0 then return c fi
      od
    end proc:
    map(f, [$0..100]); # Robert Israel, Jan 21 2018
  • Mathematica
    a[n_] := For[c = 4, True, c = If[PrimeQ[c + 1], c + 2, c + 1], If[PowerMod[n, c, c] == Mod[n, c], Return[c]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 18 2013 *)
  • PARI
    a(n)=forcomposite(c=4,554,if(Mod(n,c)^c==n,return(c))); 561 \\ Charles R Greathouse IV, Feb 23 2014
    
  • Python
    from sympy import isprime
    def A000790(n):
        c = 4
        while pow(n,c,c) != (n % c) or isprime(c):
            c += 1
        return c # Chai Wah Wu, Apr 02 2021