A242974 Let M_n = A002110(n) (the n-th primorial), let N*(n)(N**(n), respectively) be the number of numbers k in [1, M_n] for which lpf(k-3) > lpf(k-1) >= prime(n) (lpf(k-1) > lpf(k-3) >= prime(n), respectively) such that k-3, k-1 are not twin primes, where lpf=least prime factor. Then a(n) = N*(n) - N**(n).
1, 1, 3, 25, 67, 131, 1556, -1671
Offset: 3
Links
- Vladimir Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014 (Sections 10,14).
Programs
-
PARI
lpf(k) = factorint(k)[1, 1]; a(n) = {my(p=prime(n), r=1, s=2, t, u=0); for(k=4, prod(i=1, n, prime(i)), if((t=lpf(k-1))>r, if(r>=p&&(r
=p, u++)); r=s; s=t); u; } \\ Jinyuan Wang, Mar 13 2020
Extensions
More terms from Peter J. C. Moses, Jun 13 2014
Comments