A000879
Number of primes < prime(n)^2.
Original entry on oeis.org
2, 4, 9, 15, 30, 39, 61, 72, 99, 146, 162, 219, 263, 283, 329, 409, 487, 519, 609, 675, 705, 811, 886, 1000, 1163, 1252, 1294, 1381, 1423, 1523, 1877, 1976, 2141, 2190, 2489, 2547, 2729, 2915, 3043, 3241, 3436, 3512, 3868, 3945, 4089, 4164, 4627, 5106
Offset: 1
gandalf(AT)hrn.office.ssi.net (James D. Ausfahl)
A230698
Triangle read by rows: T(n,k) = T(n-1,k-1) + n*T(n-2,k); T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k>n or if k<0.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 8, 7, 9, 1, 1, 15, 33, 12, 14, 1, 1, 48, 57, 87, 18, 20, 1, 1, 105, 279, 141, 185, 25, 27, 1, 1, 384, 561, 975, 285, 345, 33, 35, 1, 1, 945, 2895, 1830, 2640, 510, 588, 42, 44, 1, 1, 3840, 6555, 12645, 4680, 6090, 840, 938, 52, 54, 1, 1
Offset: 0
Triangle begins (0<=k<=n):
1
1, 1
2, 1, 1
3, 5, 1, 1
8, 7, 9, 1, 1
15, 33, 12, 14, 1, 1
48, 57, 87, 18, 20, 1, 1
105, 279, 141, 185, 25, 27, 1, 1
384, 561, 975, 285, 345, 33, 35, 1, 1
945, 2895, 1830, 2640, 510, 588, 42, 44, 1, 1
3840, 6555, 12645, 4680, 6090, 840, 938, 52, 54, 1, 1
10395, 35685, 26685, 41685, 10290, 12558, 1302, 1422, 63, 65, 1, 1
-
t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k > n || k < 0, 0, t[n - 1, k - 1] + n*t[n - 2, k]]; Table[t[n, k], {n, 0, 10}, {k, 0, n}](* Clark Kimberling, Oct 19 2014 *)
(* Next, the polynomials *); z = 20; f[x_, n_] := x + n/f[x, n - 1]; f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}]; u = Numerator[t]; TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]] (* A249057 array *)
Flatten[CoefficientList[u, x]] (* A249057 sequence *)
(* Clark Kimberling, Oct 19 2014 *)
Showing 1-2 of 2 results.
Comments