cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000879 Number of primes < prime(n)^2.

Original entry on oeis.org

2, 4, 9, 15, 30, 39, 61, 72, 99, 146, 162, 219, 263, 283, 329, 409, 487, 519, 609, 675, 705, 811, 886, 1000, 1163, 1252, 1294, 1381, 1423, 1523, 1877, 1976, 2141, 2190, 2489, 2547, 2729, 2915, 3043, 3241, 3436, 3512, 3868, 3945, 4089, 4164, 4627, 5106
Offset: 1

Views

Author

gandalf(AT)hrn.office.ssi.net (James D. Ausfahl)

Keywords

Comments

a(n) is the least index i such that A052180(i) = prime(n). - Labos Elemer, May 14 2003
Number of primes determined at the n-th step of the sieve of Eratosthenes. - Jean-Christophe Hervé, Oct 21 2013
There are only 3 squares in the current data: 4, 9, 7745089. - Michel Marcus, Apr 07 2018
There are no other squares up to a(780000). - Giovanni Resta, Apr 09 2018

Crossrefs

Cf. A050216 (first differences), A089609, A052180, A000720, A001248, A000885, A054270 (primes of rank a(n)).

Programs

  • Mathematica
    PrimePi[Prime[Range[50]]^2] (* Harvey P. Dale, Jan 16 2013 *)
  • PARI
    a(n) = primepi(prime(n)^2); \\ Michel Marcus, Oct 28 2013

Formula

a(n) = A000720(A001248(n)). - Michel Marcus, Apr 07 2018

Extensions

Edited by Ralf Stephan, Aug 24 2004

A230698 Triangle read by rows: T(n,k) = T(n-1,k-1) + n*T(n-2,k); T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k>n or if k<0.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 8, 7, 9, 1, 1, 15, 33, 12, 14, 1, 1, 48, 57, 87, 18, 20, 1, 1, 105, 279, 141, 185, 25, 27, 1, 1, 384, 561, 975, 285, 345, 33, 35, 1, 1, 945, 2895, 1830, 2640, 510, 588, 42, 44, 1, 1, 3840, 6555, 12645, 4680, 6090, 840, 938, 52, 54, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 28 2013

Keywords

Comments

Triangle A180048 mixed with triangle A180049.
Let p(n,x) be the polynomial whose coefficients are given by row n; e.g., p(2,x) = 2 + x + x^2; then p(n,x) is the numerator of the rational function given by f(n,x) = x + (n - 1)/f(n-1,x), where f(x,0) = 1. (Sum of numbers in row n) = A000885(n) for n >= 1. (Column 1) = A006882 (n-th term = n!! for n >= 0) - Clark Kimberling, Oct 19 2014

Examples

			Triangle begins (0<=k<=n):
1
1, 1
2, 1, 1
3, 5, 1, 1
8, 7, 9, 1, 1
15, 33, 12, 14, 1, 1
48, 57, 87, 18, 20, 1, 1
105, 279, 141, 185, 25, 27, 1, 1
384, 561, 975, 285, 345, 33, 35, 1, 1
945, 2895, 1830, 2640, 510, 588, 42, 44, 1, 1
3840, 6555, 12645, 4680, 6090, 840, 938, 52, 54, 1, 1
10395, 35685, 26685, 41685, 10290, 12558, 1302, 1422, 63, 65, 1, 1
		

Crossrefs

Programs

  • Mathematica
    t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k > n || k < 0, 0, t[n - 1, k - 1] + n*t[n - 2, k]]; Table[t[n, k], {n, 0, 10}, {k, 0, n}](* Clark Kimberling, Oct 19 2014 *)
    (* Next, the polynomials *); z = 20; f[x_, n_] := x + n/f[x, n - 1]; f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}]; u = Numerator[t]; TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]]  (* A249057 array *)
    Flatten[CoefficientList[u, x]] (* A249057 sequence *)
    (* Clark Kimberling, Oct 19 2014 *)

Formula

T(n,k) = T(n-1,k-1) + n*T(n-2,k); T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k>n or if k<0.
T(n,0) = A006882(n).
T(n+1,1) = A007911(n+3).
Sum_{k=0..n} T(n,k) = A000085(n+1).

Extensions

Corrected by Clark Kimberling, Oct 21 2014
Showing 1-2 of 2 results.