cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000908 Atom-rooted polyenoids with n edges with symmetry class C_s.

Original entry on oeis.org

0, 0, 1, 4, 14, 47, 164, 565, 1982, 6977, 24850, 89082, 321855, 1169853, 4276923, 15713799, 57998270, 214934984, 799473752, 2983682702, 11169374372, 41929478873, 157807392886, 595340271682, 2250901007539, 8527699269192, 32369066434276
Offset: 0

Views

Author

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

Crossrefs

Programs

  • Maple
    U0 := (1-sqrt(1-4*x))/2/x ;
    V0 := 1+x*subs(x=x^2,U0) ;
    C := ( subs(x=x^2,U0)^3 -3*subs(x=x^4,U0)*subs(x=x^2,V0) -subs(x=x^6,U0) +3*subs(x=x^6,V0) )/6 ; # (19)
    taylor(%,x=0,60) ;
    L := gfun[seriestolist](%) ;
    seq(op(2*i+1,L),i=0..(nops(L)-1)/2) ; # R. J. Mathar, Jul 26 2019
  • Mathematica
    u0[x_] := (1 - Sqrt[1 - 4 x])/(2 x); v0[x_] := 1 + x u0[x^2];
    gf = Simplify[(u0[x]^3 - 3 u0[x^2] v0[x] - u0[x^3] + 3 v0[x^3])/6]
    CoefficientList[gf + O[x]^30, x] (* Andrey Zabolotskiy, Feb 08 2023 *)

Formula

a(n) = A003446(n+1) - u((n-3)/6) - (u(n/3) - u((n-3)/6))/2 - (u(n/2) + (u((n+1)/2) - u((n-3)/6))) for n > 0 where u(n) = binomial(2*n, n)/(n+1) if n is an integer and 0 otherwise. - Sean A. Irvine, Oct 05 2015

Extensions

More terms from Sean A. Irvine, Oct 05 2015

A187916 a(n) = C(n) if n is odd, else C(n) - C(n/2); C(n) are Catalan numbers.

Original entry on oeis.org

1, 1, 5, 12, 42, 127, 429, 1416, 4862, 16754, 58786, 207880, 742900, 2674011, 9694845, 35356240, 129644790, 477633838, 1767263190, 6564103624, 24466267020, 91482504854, 343059613650, 1289903939312, 4861946401452, 18367352329252, 69533550916004
Offset: 1

Views

Author

Gary W. Adamson, Mar 15 2011

Keywords

Examples

			a(6) = 127 = A000108(6) - A000108(3) = (132 - 5)
a(5) = 42 = A000108(5)
		

Crossrefs

Programs

Formula

Conjecture: -(n-2)*(n+2)*(n+1)*a(n) +8*(n+1)*(n^2-3*n+1)*a(n-1) +4*(-3*n^3+18*n^2-22*n+2)*a(n-2) -32*(n-2)*(n^2-3*n+1)*a(n-3) +16*
(2*n-7)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Jul 21 2015
Showing 1-2 of 2 results.