A000964 The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.
0, 0, 1, 1, 4, 8, 25, 53, 164, 348, 1077, 2285, 7072, 15004, 46437, 98521, 304920, 646920, 2002201, 4247881, 13147084, 27892928, 86327905, 183153773, 566856284, 1202645508, 3722157357, 7896950165, 24440860552, 51853868404, 160486408077
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. N. Lehmer, On ternary continued fractions, Tohoku Math. J., 37 (1933), 436-445.
- D. N. Lehmer, On ternary continued fractions (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (0, 7, 0, -3, 0, 1).
Programs
-
Maple
G:=(x^5-3*x^4+x^3+x^2)/(-x^6+3*x^4-7*x^2+1): Gser:=series(G,x=0,35): seq(coeff(Gser,x,n),n=0..32); # Emeric Deutsch, Apr 22 2006
-
Mathematica
LinearRecurrence[{0,7,0,-3,0,1},{0,0,1,1,4,8},31] (* Harvey P. Dale, Jun 29 2011 *) CoefficientList[Series[(x^5-3x^4+x^3+x^2)/(-x^6+3x^4-7x^2+1),{x,0,40}],x] (* Vincenzo Librandi, Apr 11 2012 *)
Formula
G.f.: (x^5 - 3x^4 + x^3 + x^2)/(-x^6 + 3x^4 - 7x^2 + 1).
a(n) = 7*a(n-2) - 3*a(n-4) + a(n-6); a(0)=0, a(1)=0, a(2)=1, a(3)=1, a(4)=4, a(5)=8. - Harvey P. Dale, Jun 29 2011
Extensions
More terms from Emeric Deutsch, Apr 22 2006