cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000964 The convergent sequence C_n for the ternary continued fraction (3,1;2,2) of period 2.

Original entry on oeis.org

0, 0, 1, 1, 4, 8, 25, 53, 164, 348, 1077, 2285, 7072, 15004, 46437, 98521, 304920, 646920, 2002201, 4247881, 13147084, 27892928, 86327905, 183153773, 566856284, 1202645508, 3722157357, 7896950165, 24440860552, 51853868404, 160486408077
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    G:=(x^5-3*x^4+x^3+x^2)/(-x^6+3*x^4-7*x^2+1): Gser:=series(G,x=0,35): seq(coeff(Gser,x,n),n=0..32); # Emeric Deutsch, Apr 22 2006
  • Mathematica
    LinearRecurrence[{0,7,0,-3,0,1},{0,0,1,1,4,8},31] (* Harvey P. Dale, Jun 29 2011 *)
    CoefficientList[Series[(x^5-3x^4+x^3+x^2)/(-x^6+3x^4-7x^2+1),{x,0,40}],x] (* Vincenzo Librandi, Apr 11 2012 *)

Formula

G.f.: (x^5 - 3x^4 + x^3 + x^2)/(-x^6 + 3x^4 - 7x^2 + 1).
a(n) = 7*a(n-2) - 3*a(n-4) + a(n-6); a(0)=0, a(1)=0, a(2)=1, a(3)=1, a(4)=4, a(5)=8. - Harvey P. Dale, Jun 29 2011

Extensions

More terms from Emeric Deutsch, Apr 22 2006