A000967 Sum of Fermat coefficients.
1, 2, 4, 8, 18, 40, 91, 210, 492, 1165, 2786, 6710, 16267, 39650, 97108, 238824, 589521, 1459960, 3626213, 9030450, 22542396, 56393792, 141358274, 354975429, 892893120, 2249412290, 5674891000, 14335757256, 36259245522, 91815545800
Offset: 1
Keywords
Examples
n...Sum_{c=1..n} (n:c).....a(n) -------------------------------- .1........1.................1 .2........2.................2 .3........4.................4 .4........8+1/3.............8
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 (corrected by Sean A. Irvine, April 17, 2019)
- R. P. Loh, A. G. Shannon, A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- P. A. Piza, Fermat coefficients, Math. Mag., 27 (1954), 141-146.
Programs
-
Haskell
import Data.Function (on) a000967 n = round $ sum $ zipWith ((/) `on` fromIntegral) (a258993_row n) [1, 3 ..] -- Reinhard Zumkeller, Jun 22 2015
-
Magma
[Round((&+[Binomial(n+k,n-k)/(2*k+1): k in [0..n-1]])): n in [1..35]]; // G. C. Greubel, Apr 16 2019
-
Maple
FermatCoeff:=(n,c)->binomial(2*n-c,c-1)/c:seq(round(add(FermatCoeff(n,c),c=1..n)),n=1..40); # Pab Ter, Oct 13 2005
-
Mathematica
Table[Round[Sum[Binomial[n+k, n-k]/(2*k+1), {k, 0, n-1}]], {n,1,35}] (* G. C. Greubel, Apr 16 2019 *)
-
PARI
{a(n) = round(sum(k=0,n-1, binomial(n+k,n-k)/(2*k+1)))}; \\ G. C. Greubel, Apr 16 2019
-
Sage
[round(sum(binomial(n+k,n-k)/(2*k+1) for k in (0..n-1))) for n in (1..35)] # G. C. Greubel, Apr 16 2019
Formula
Following Piza's definition for the Fermat coefficients: (n:c)=binomial(2n-c, c-1)/c, a(n)= Round( sum_ {c=1..n} (n:c) ). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 13 2005
a(n) = rounded(sum(A258993(n,k)/(2*k+1)): k = 0..n-1). - Reinhard Zumkeller, Jun 22 2015
Extensions
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 13 2005