cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000985 Number of n X n symmetric matrices with nonnegative entries and all row sums 2.

Original entry on oeis.org

1, 1, 3, 11, 56, 348, 2578, 22054, 213798, 2313638, 27627434, 360646314, 5107177312, 77954299144, 1275489929604, 22265845018412, 412989204564572, 8109686585668956, 168051656468233972, 3664479286118269972, 83868072451846938336, 2009964340465840802576
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.7.

Crossrefs

Cf. A000986.

Programs

  • Mathematica
    max = 21; egf[x_] := (1-x)^(-1/2)*Exp[x^2/4 + x/(2*(1-x))]; CoefficientList[ Series[ egf[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 25 2011 *)

Formula

E.g.f.: (1-x)^(-1/2)*exp(x^2/4 + x/(2*(1-x))).
a(n) ~ n^n*exp(sqrt(2*n)-n)/sqrt(2) * (1-5/(24*sqrt(2*n))). - Vaclav Kotesovec, Jul 29 2013
Recurrence: 2*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-2)*(n-1)*a(n-2) - 2*(n-2)*(n-1)*a(n-3) + (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Jul 29 2013