A001205
Number of clouds with n points; number of undirected 2-regular labeled graphs; or number of n X n symmetric matrices with (0,1) entries, trace 0 and all row sums 2.
Original entry on oeis.org
1, 0, 0, 1, 3, 12, 70, 465, 3507, 30016, 286884, 3026655, 34944085, 438263364, 5933502822, 86248951243, 1339751921865, 22148051088480, 388246725873208, 7193423109763089, 140462355821628771, 2883013994348484940
Offset: 0
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 410-411.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 276 and 279.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.7.
- Ph. Flajolet, Singular combinatorics, pp. 561-571, Proc. Internat. Congr. Math., Beijing 2002, Higher Education Press, Beijing, 2002, Vol III.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.6b, 3.3.34.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8. Also problems 5.23 and 5.15(a), case k=3.
- Z. Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009] [apparently unpublished as of 2016]
- H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 77, Eq. 3.9.1.
- W. A. Whitworth, Choice and Chance, Bell, 1901, p. 269, ex. 160.
- T. D. Noe, Table of n, a(n) for n=0..100
- Editorial note, Robinson's constant, Amer. Math. Monthly, 59 (1952), 296-297.
- Ph. Flajolet, Singular combinatorics, arXiv:math/0304465 [math.CO], 2003.
- Ph. Flajolet and A. Odlyzko, Singularity analysis of generating functions, [Research Report] RR-0826, INRIA. 1988.
- Atabey Kaygun, Enumerating Labeled Graphs that Realize a Fixed Degree Sequence, arXiv:2101.02299 [math.CO], 2021.
- Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- H. Richter, Analyzing coevolutionary games with dynamic fitness landscapes, arXiv preprint arXiv:1603.06374 [q-bio.PE], 2016.
- R. Robinson, A new absolute geometric constant?, Amer. Math. Monthly, 58 (1951), 462-469.
- Weiping Wang, Tianming Wang, An automatic approach to the generating functions for some special sequences, Ars. Comb. 116 (2018) 263, Example 4.2
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 86, Eq. 3.9.1.
-
a := n -> (-1)^n*n!*add((3/4)^k*binomial(-1/2, n-k)*hypergeom([1/2,-k], [1/2-n+k], 1/3)/ k!, k=0..n): seq(simplify(a(n)), n=0..21); # Peter Luschny, Aug 26 2017
-
m = 21; CoefficientList[ Series[ Exp[-x/2 - x^2/4] / Sqrt[1-x], {x, 0, m}], x]*Table[n!, {n, 0, m}] (* Jean-François Alcover, Jun 21 2011, after e.g.f. *)
-
a(n):=sum(sum(binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-i),i,0,k),k,0,n);
makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 25 2017 */
-
a(n)=if(n<0,0,n!*polcoeff(exp(-x/2-x^2/4+x*O(x^n))/sqrt(1-x+x*O(x^n)),n))
A188403
T(n,k) = Number of (n*k) X k binary arrays with rows in nonincreasing order, n ones in every column and no more than 2 ones in any row.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 10, 11, 4, 1, 26, 56, 23, 5, 1, 76, 348, 214, 42, 6, 1, 232, 2578, 2698, 641, 69, 7, 1, 764, 22054, 44288, 14751, 1620, 106, 8, 1, 2620, 213798, 902962, 478711, 62781, 3616, 154, 9, 1, 9496, 2313638, 22262244, 20758650, 3710272, 222190, 7340, 215, 10, 1
Offset: 1
Table starts
1 2 4 10 26 76 232 764 2620
1 3 11 56 348 2578 22054 213798 2313638
1 4 23 214 2698 44288 902962 22262244 648446612
1 5 42 641 14751 478711 20758650 1158207312 80758709676
1 6 69 1620 62781 3710272 313568636 36218801244 5518184697792
1 7 106 3616 222190 22393101 3444274966 767013376954 ...
1 8 154 7340 681460 111200600 29445929253 ...
1 9 215 13825 1865715 472211360 ...
1 10 290 24510 4655535 ...
1 11 381 41336 ...
...
All solutions for 4 X 2:
..1..0....1..1....1..1
..1..0....1..1....1..0
..0..1....0..0....0..1
..0..1....0..0....0..0
-
T(k,n)={
local(M=Map(Mat([0, 1])));
my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(r, h, p, q, v, e) = if(!p, acc(x^e+q, v), my(i=poldegree(p), t=pollead(p)); self()(r, k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, (k-e)\m), self()(r, if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e+j*m)))));
for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, k, src[i, 1], 0, src[i, 2], 0))); vecsum(Mat(M)[,2]);
}
{for(n=1, 7, for(k=1, 7, print1(T(n,k),", ")); print)} \\ Andrew Howroyd, Apr 08 2020
A000986
Number of n X n symmetric matrices with (0,1) entries and all row sums 2.
Original entry on oeis.org
1, 0, 1, 4, 18, 112, 820, 6912, 66178, 708256, 8372754, 108306280, 1521077404, 23041655136, 374385141832, 6493515450688, 119724090206940, 2337913445039488, 48195668439235612, 1045828865817825264, 23826258064972682776, 568556266922455167040
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8.
- Herbert S. Wilf, Generatingfunctionology, p. 104.
- Alois P. Heinz, Table of n, a(n) for n = 0..445 (first 101 terms from T. D. Noe)
- H. Gupta, Enumeration of symmetric matrices, Duke Math. J., 35 (1968), vol 3, 653-659.
- H. Gupta, Enumeration of symmetric matrices (annotated scanned copy)
- Zhonghua Tan, Shanzhen Gao, and H. Niederhausen, Enumeration of (0,1) matrices with constant row and column sums, Appl. Math. Chin. Univ. 21 (4) (2006) 479-486.
-
a:= proc(n) option remember;
`if`(n<2, 1-n, add(binomial (n-1, k-1)
*(k! +`if`(k>2, (k-1)!, 0))/2 *a(n-k), k=2..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 24 2011
-
a=1/(2(1-x))-1/2-x/2; b=(Log[1/(1-x)]-x-x^2/2)/2;
Range[0, 20]! CoefficientList[Series[Exp[a + b], {x, 0, 20}], x]
(* Second program: *)
a[n_] := a[n] = If[n<2, 1-n, Sum[Binomial[n-1, k-1]*(k! + If[k>2, (k-1)!, 0])/2*a[n-k], {k, 2, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 20 2017, after Alois P. Heinz *)
A002137
Number of n X n symmetric matrices with nonnegative integer entries, trace 0 and all row sums 2.
Original entry on oeis.org
1, 0, 1, 1, 6, 22, 130, 822, 6202, 52552, 499194, 5238370, 60222844, 752587764, 10157945044, 147267180508, 2282355168060, 37655004171808, 658906772228668, 12188911634495388, 237669544014377896, 4871976826254018760, 104742902332392298296
Offset: 0
a(2)=1 from
02
20
a(3)=1 from
011
101
011
s(4)=6 from
0200 0110
2000 1001
0002 1001
0020 0110
x3 x3
- N. J. Calkin, J. E. Janoski, matrices of row and column sum 2, Congr. Numerantium 192 (2008) 19-32
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8.
- T. D. Noe, Table of n, a(n) for n = 0..100
- A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5.
- A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5. [Annotated scanned copy]
- Jacob L. Bourjaily, Michael Plesser, and Cristian Vergu, The Many Colours of Amplitudes, arXiv:2412.21189 [hep-th], 2024. See pp. 17, 52.
- Mark Colarusso, William Q. Erickson, and Jeb F. Willenbring, Contingency tables and the generalized Littlewood-Richardson coefficients, arXiv:2012.06928 [math.RT], 2020.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From _N. J. A. Sloane_, May 01 2012
- I. M. H. Etherington, Some problems of non-associative combinations, Edinburgh Math. Notes, 32 (1940), 1-6.
- Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- P. A. MacMahon, Combinations derived from m identical sets of n different letters and their connexion with general magic squares, Proc. London Math. Soc., 17 (1917), 25-41.
- Victor S. Miller, The Cayley Menger Theorem and integer matrices with row sum 2 (on MathOverflow)
- T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923. [Annotated scans of selected pages] See Vol. 3, p. 122.
- Marko R. Riedel, Number of ways to derange n numbers ignoring direction, counted by Analytic Combinatorics (2024)
-
nxt[{n_,a_,b_,c_}]:={n+1,b,c,n(b+c)-n(n-1) a/2}; Drop[Transpose[ NestList[ nxt,{0,1,0,1},30]][[2]],2] (* Harvey P. Dale, Jun 12 2013 *)
-
x='x+O('x^66); Vec( serlaplace( (1-x)^(-1/2)*exp(-x/2+x^2/4) ) ) \\ Joerg Arndt, Apr 27 2013
A095693
Triangle read by rows: T(n,k) is the number of multigraphs without loops on n labeled nodes with k edges and maximum degree 2.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 3, 6, 1, 1, 6, 21, 22, 6, 1, 10, 55, 130, 130, 22, 1, 15, 120, 485, 1005, 822, 130, 1, 21, 231, 1400, 4830, 8547, 6202, 822, 1, 28, 406, 3416, 17465, 52052, 81676, 52552, 6202, 1, 36, 666, 7392, 52101, 230832, 610932, 859932, 499194, 52552
Offset: 0
Nicholas S. Horne (nickhorne(AT)cox.net), Jul 06 2004
Triangle begins:
1;
1, 0;
1, 1, 1;
1, 3, 6, 1;
1, 6, 21, 22, 6;
1, 10, 55, 130, 130, 22;
1, 15, 120, 485, 1005, 822, 130;
1, 21, 231, 1400, 4830, 8547, 6202, 822;
...
T(3,2)=6 since there are six ways that a multigraph with 3 nodes can be constructed with 2 edges such that no vertex has degree greater than two.
- Horne, Nicholas S. "Analysis of Viable Network Configurations from a Combinatorial, Graphical and Algebraic Perspective." Diss. Providence College, 2004.
-
T(n)={my(v=Vec(serlaplace(sqrt(1/(1-x*y) + O(x*x^n))*exp(x + (x^2*y/(1-x*y) - x*y)/2 + x^2*y^2/4 + O(x*x^n))))); vector(#v, i, Vecrev(v[i], i))}
{ my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 07 2019
Definition clarified and terms a(37) and beyond from
Andrew Howroyd, Nov 07 2019
A108246
Number of labeled 2-regular graphs with no multiple edges, but loops are allowed (i.e., each vertex is endpoint of two (usual) edges or one loop).
Original entry on oeis.org
1, 1, 1, 2, 8, 38, 208, 1348, 10126, 86174, 819134, 8604404, 98981944, 1237575268, 16710431992, 242337783032, 3756693451772, 61991635990652, 1084943597643964, 20072853005524696, 391443701509660096, 8024999955144721256, 172544980412641191776
Offset: 0
a(3) = 2: {(1,2) (2,3) (1,3)}, {(1,1) (2,2) (3,3)}.
-
b:= proc(n) option remember; if n=0 then 1 elif n<3 then 0 else (n-1) *(b(n-1) +b(n-3) *(n-2)/2) fi end: a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 12 2008
-
CoefficientList[Series[E^(-x^2/4+x/2)/Sqrt[1-x], {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)
A227786
Take squares larger than 1, subtract 3 from even squares and 2 from odd squares; a(n) = a(n-1) + A168276(n+1) (with a(1) = 1).
Original entry on oeis.org
1, 7, 13, 23, 33, 47, 61, 79, 97, 119, 141, 167, 193, 223, 253, 287, 321, 359, 397, 439, 481, 527, 573, 623, 673, 727, 781, 839, 897, 959, 1021, 1087, 1153, 1223, 1293, 1367, 1441, 1519, 1597, 1679, 1761, 1847, 1933, 2023, 2113, 2207, 2301, 2399, 2497, 2599, 2701
Offset: 1
A000987
Number of stochastic matrices of integers.
Original entry on oeis.org
0, 1, 1, 2, 7, 32, 184, 1268, 10186, 93356, 960646, 10959452, 137221954, 1870087808, 27548231008, 436081302248, 7380628161076, 132975267434552, 2540593483517404, 51299775805464824, 1091447620966600804, 24401984084483685248, 571907754141520643296
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* b = A000985 *) Clear[a, b]; b[0] = 1; b[1] = 1; b[2] = 3; b[3] = 11; b[4] = 56; b[n_] := b[n] = (2*n-1)*b[n-1] - (n-2)*(n-1)*b[n-2] - (n-2)*(n - 1)*b[n-3] + (n-3)*(n-2)*(n-1)*b[(n-4)]/2; a[0] = 0; a[1] = 1; a[n_] := a[n] = (n-2)*a[n-1] + b[n-2]; Array[a, 22, 0] (* Jean-François Alcover, Feb 15 2016, after Sean A. Irvine *)
Showing 1-8 of 8 results.
Comments