cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A287959 Odd primes p such that p^2 divides A001205(p)-(p-1)/2.

Original entry on oeis.org

3, 43, 8237, 14533, 26153, 11314271
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2017

Keywords

Comments

Carlitz proved that A001205(p) == (p-1)/2 (mod p) for all odd primes p. This sequence consists of odd primes for which A001205(p) == (p-1)/2 (mod p^2) holds.
a(7) > 2.3*10^7. - Giovanni Resta, Jun 04 2017

Crossrefs

Cf. A001205.

Programs

  • Mathematica
    a[1] = 0; a[2] = 0; a[3] = 1; a[n_] := a[n] = (n - 1)*(a[n - 1] + (n - 2)*a[n - 3]/2); lst = {}; k = 3; While[Length[lst] < 5, If[PrimeQ[k] && Divisible[a[k] - (k - 1)/2, k^2], lst = AppendTo[lst, k]]; k++]; lst

Extensions

a(6) from Giovanni Resta, Jun 04 2017

A001710 Order of alternating group A_n, or number of even permutations of n letters.

Original entry on oeis.org

1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n-1) is also the number of ways that a 3-cycle in the symmetric group S_n can be written as a product of 2 long cycles (of length n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 14 2001
a(n) is the number of Hamiltonian circuit masks for an n X n adjacency matrix of an undirected graph. - Chad Brewbaker, Jan 31 2003
a(n-1) is the number of necklaces one can make with n distinct beads: n! bead permutations, divide by two to represent flipping the necklace over, divide by n to represent rotating the necklace. Related to Stirling numbers of the first kind, Stirling cycles. - Chad Brewbaker, Jan 31 2003
Number of increasing runs in all permutations of [n-1] (n>=2). Example: a(4)=12 because we have 12 increasing runs in all the permutations of [3] (shown in parentheses): (123), (13)(2), (3)(12), (2)(13), (23)(1), (3)(2)(1). - Emeric Deutsch, Aug 28 2004
Minimum permanent over all n X n (0,1)-matrices with exactly n/2 zeros. - Simone Severini, Oct 15 2004
The number of permutations of 1..n that have 2 following 1 for n >= 1 is 0, 1, 3, 12, 60, 360, 2520, 20160, ... . - Jon Perry, Sep 20 2008
Starting (1, 3, 12, 60, ...) = binomial transform of A000153: (1, 2, 7, 32, 181, ...). - Gary W. Adamson, Dec 25 2008
First column of A092582. - Mats Granvik, Feb 08 2009
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=3) ~ exp(-x)/x*(1 - 3/x + 12/x^2 - 60/x^3 + 360/x^4 - 2520/x^5 + 20160/x^6 - 81440/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
For n>1: a(n) = A173333(n,2). - Reinhard Zumkeller, Feb 19 2010
Starting (1, 3, 12, 60, ...) = eigensequence of triangle A002260, (a triangle with k terms of (1,2,3,...) in each row given k=1,2,3,...). Example: a(6) = 360, generated from (1, 2, 3, 4, 5) dot (1, 1, 3, 12, 60) = (1 + 2 + 9 + 48 + 300). - Gary W. Adamson, Aug 02 2010
For n>=2: a(n) is the number of connected 2-regular labeled graphs on (n+1) nodes (Cf. A001205). - Geoffrey Critzer, Feb 16 2011.
The Fi1 and Fi2 triangle sums of A094638 are given by the terms of this sequence (n>=1). For the definition of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Also [1, 1] together with the row sums of triangle A162608. - Omar E. Pol, Mar 09 2012
a(n-1) is, for n>=2, also the number of necklaces with n beads (only C_n symmetry, no turnover) with n-1 distinct colors and signature c[.]^2 c[.]^(n-2). This means that two beads have the same color, and for n=2 the second factor is omitted. Say, cyclic(c[1]c[1]c[2]c[3]..c[n-1]), in short 1123...(n-1), taken cyclically. E.g., n=2: 11, n=3: 112, n=4: 1123, 1132, 1213, n=5: 11234, 11243, 11324, 11342, 11423, 11432, 12134, 12143, 13124, 13142, 14123, 14132. See the next-to-last entry in line n>=2 of the representative necklace partition array A212359. - Wolfdieter Lang, Jun 26 2012
For m >= 3, a(m-1) is the number of distinct Hamiltonian circuits in a complete simple graph with m vertices. See also A001286. - Stanislav Sykora, May 10 2014
In factorial base (A007623) these numbers have a simple pattern: 1, 1, 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000, 5500000000, 60000000000, 660000000000, 7000000000000, 77000000000000, 800000000000000, 8800000000000000, 90000000000000000, 990000000000000000, etc. See also the formula based on this observation, given below. - Antti Karttunen, Dec 19 2015
Also (by definition) the independence number of the n-transposition graph. - Eric W. Weisstein, May 21 2017
Number of permutations of n letters containing an even number of even cycles. - Michael Somos, Jul 11 2018
Equivalent to Brewbaker's and Sykora's comments, a(n - 1) is the number of undirected cycles covering n labeled vertices, hence the logarithmic transform of A002135. - Gus Wiseman, Oct 20 2018
For n >= 2 and a set of n distinct leaf labels, a(n) is the number of binary, rooted, leaf-labeled tree topologies that have a caterpillar shape (column k=1 of A306364). - Noah A Rosenberg, Feb 11 2019
Also the clique covering number of the n-Bruhat graph. - Eric W. Weisstein, Apr 19 2019
a(n) is the number of lattices of the form [s,w] in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
For n > 3, a(n) = p_1^e_1*...*p_m^e_m, where p_1 = 2 and e_m = 1. There exists p_1^x where x <= e_1 such that p_1^x*p_m^e_m is a primitive Zumkeller number (A180332) and p_1^e_1*p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 3, a(n) = p_1^e_1*p_m^e_m*r, where r is relatively prime to p_1*p_m, is also a Zumkeller number. - Ivan N. Ianakiev, Mar 11 2020
For n>1, a(n) is the number of permutations of [n] that have 1 and 2 as cycle-mates, that is, 1 and 2 are contained in the same cycle of a cyclic representation of permutations of [n]. For example, a(4) counts the 12 permutations with 1 and 2 as cycle-mates, namely, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2 3) (4), (1 3 2) (4), (1 2 4 )(3), (1 4 2)(3), (1 2)(3 4), and (1 2)(3)(4). Since a(n+2)=row sums of A162608, our result readily follows. - Dennis P. Walsh, May 28 2020

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n+1)= A046089(n, 1), n >= 1 (first column of triangle), A161739 (q(n) sequence).
Bisections are A002674 and A085990 (essentially).
Row 3 of A265609 (essentially).
Row sums of A307429.

Programs

  • Magma
    [1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
    
  • Maple
    seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
  • Mathematica
    a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
    a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
    Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
  • PARI
    {a(n) = if( n<2, n>=0, n!/2)};
    
  • PARI
    a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
    
  • PARI
    A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
    
  • Python
    from math import factorial
    def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
    
  • SageMath
    def A001710(n): return (factorial(n) +int(n<2))//2
    [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
  • Scheme
    ;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization
    (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
    ;; Antti Karttunen, Dec 19 2015
    

Formula

a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
First Eulerian transform of A000027. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
a(n) = ( A000254(n) - 2* A001711(n-3) )/3, n>2. - Gary Detlefs, May 24 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A006595(n-1)*n/A000124(n) for n>=2. - Anton Zakharov, Aug 23 2016
a(n) = A001563(n-1) - A001286(n-1) for n>=2. - Anton Zakharov, Sep 23 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004

A059441 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			1;
1,   1;
1,   0,       1;
1,   3,       3,        1;
1,   0,      12,        0,          1;
1,  15,      70,       70,         15,    1;
1,   0,     465,        0,        465,    0,   1;
1, 105,    3507,    19355,      19355, 3507, 105, 1;
1,   0,   30016,        0,    1024380, ...;
1, 945,  286884, 11180820,   66462606, ...;
1,   0, 3026655,        0, 5188453830, ...;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.

Crossrefs

Row sums are A295193.
Columns: A123023 (k=1), A001205 (k=2), A002829 (k=3, with alternating zeros), A005815 (k=4), A338978 (k=5, with alternating zeros), A339847 (k=6).
Cf. A051031 (unlabeled case), A324163 (connected case), A333351 (multigraphs).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
  • PARI
    for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(37)-a(55) from Andrew Howroyd, Aug 25 2017

A000986 Number of n X n symmetric matrices with (0,1) entries and all row sums 2.

Original entry on oeis.org

1, 0, 1, 4, 18, 112, 820, 6912, 66178, 708256, 8372754, 108306280, 1521077404, 23041655136, 374385141832, 6493515450688, 119724090206940, 2337913445039488, 48195668439235612, 1045828865817825264, 23826258064972682776, 568556266922455167040
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of simple labeled graphs on n nodes with all vertices of degree 1 or 2.
From R. J. Mathar, Apr 07 2017: (Start)
These are the row sums of the following triangle which shows the number of symmetric n X n {0,1} matrices with row and column sums 2 refined for trace t, 0 <= t <= n:
0: 1
1: 0 0
2: 0 0 1
3: 1 0 3 0
4: 3 0 12 0 3
5: 12 0 70 0 30 0
6: 70 0 465 0 270 0 15
7: 465 0 3507 0 2625 0 315 0
See also A001205 for column t=0. (End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8.
  • Herbert S. Wilf, Generatingfunctionology, p. 104.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
           `if`(n<2, 1-n, add(binomial (n-1, k-1)
            *(k! +`if`(k>2, (k-1)!, 0))/2 *a(n-k), k=2..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 24 2011
  • Mathematica
    a=1/(2(1-x))-1/2-x/2; b=(Log[1/(1-x)]-x-x^2/2)/2;
    Range[0, 20]! CoefficientList[Series[Exp[a + b], {x, 0, 20}], x]
    (* Second program: *)
    a[n_] := a[n] = If[n<2, 1-n, Sum[Binomial[n-1, k-1]*(k! + If[k>2, (k-1)!, 0])/2*a[n-k], {k, 2, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 20 2017, after Alois P. Heinz *)

Formula

E.g.f.: (1-x)^(-1/2)*exp(-x-x^2/4 + x/((2*(1-x)))).
Sum_{a_1=0..n} Sum_{c=0..min(a_1, n - a_1)} Sum_{b=0..floor((n - a_1 - c)/2)} ((-1)^((n - a_1 - 2b - c) + b)*n!*(2a_1)!) / (2^(n + a_1 - 2c)*a_1!*(n - a_1 - 2b - c)!*b!*(2c)!*(a_1 - c)!). - Shanzhen Gao, Jun 05 2009
Conjecture: 2*a(n) +2*(-2*n+1)*a(n-1) +2*(n^2-2*n-1)*a(n-2) -2*(n-2)*(n-4)*a(n-3) +(n-1)*(n-2)*(n-3)*a(n-4) -(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 04 2013
Recurrence: 2*a(n) = 4*(n-1)*a(n-1) - 2*(n-3)*(n-1)*a(n-2) - (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Feb 13 2014
a(n) ~ n^n * exp(sqrt(2*n)-n-3/2) / sqrt(2) * (1 + 43/(24*sqrt(2*n))). - Vaclav Kotesovec, Feb 13 2014

A110040 Number of {2,3}-regular graphs; i.e., labeled simple graphs (no multi-edges or loops) on n vertices, each of degree 2 or 3.

Original entry on oeis.org

1, 0, 0, 1, 10, 112, 1760, 35150, 848932, 24243520, 805036704, 30649435140, 1322299270600, 64008728200384, 3447361661136640, 205070807479444088, 13388424264027157520, 953966524932871436800, 73817914562041635228928
Offset: 0

Views

Author

Marni Mishna, Jul 08 2005

Keywords

Comments

P-recursive.
Starting at n=3, number of symmetric binary matrices with all row sums 3. - R. H. Hardin, Jun 12 2008
From R. J. Mathar, Apr 07 2017: (Start)
These are the row sums of the following matrix, which counts symmetric n X n {0,1} matrices with each row and column sum equal to 3 and trace t, 0 <= t <= n:
0: 1
1: 0 0
2: 0 0 0
3: 0 0 0 1
4: 1 0 6 0 3
5: 0 30 0 70 0 12
6: 70 0 810 0 810 0 70
7: 0 5670 0 19355 0 9660 0 465
This has A001205 on the diagonal. (End)
The traceless (2n) X (2n) binary matrices in that triangle seem to be counted in A002829. - Alois P. Heinz, Apr 07 2017

Examples

			(Graphs listed by edgeset)
a(3)=1: {(1,2), (2,3), (3,1)}
a(4)=10: {(1,2), (2,3), (3,4), (4,1)}, {(1,2), (2,3), (3,4), (4,1), (1,4)}, {(1,2), (2,3), (3,4), (4,1), (2,3)}, {(1,2), (2,4), (3,4), (1,3)}, {(1,2), (2,4), (3,4), (1,3), (2,3)}, {(1,2), (2,4), (3,4), (1,3), (1,4)}, {(1,3), (2,3), (2,4), (1,4)}, {(1,3), (2,3), (2,4), (1,4), (1,2)}, {(1,3), (2,3), (2,4), (1,4), (3,4)}, {(1,2), (1,3), (1,4) (2,3), (2,4), (3,4)},
		

References

  • Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009]

Crossrefs

Cf. A000986 (sums 2), A000085 (sums 1), A139670 (sums 3).

Programs

  • Mathematica
    RecurrenceTable[{-b[n] - b[1 + n] + (-2 + 3*n)*b[2 + n] - 14*b[3 + n] + (105 + 30*n)*b[4 + n] + (-69 - 12*n)*b[5 + n] + (582 + 147*n + 9*n^2)* b[6 + n] + (-20 - 6*n)*b[7 + n] + (1160 + 363*n + 27*n^2)*b[8 + n] + (1554 + 255*n + 9*n^2)* b[9 + n] + (-2340 - 414*n - 18*n^2)*b[10 + n] + (-528 - 48*n)*b[11 + n] + (288 + 24*n)*b[12 + n] == 0, b[0] == 1, b[1] == 0, b[2] == 0, b[3] == 1/6, b[4] == 5/12, b[5] == 14/15, b[6] == 22/9, b[7] == 3515/504, b[8] == 30319/1440, b[9] == 10823/162, b[10] == 8385799/37800, b[11] == 510823919/665280}, b, {n, 0, 25}] * Range[0, 25]! (* Vaclav Kotesovec, Oct 23 2023 *)

Formula

Satisfies the linear recurrence: (-150917976*n^2 - 105258076*n^3 - 1925*n^9 - 13339535*n^5 - 45995730*n^4 - 357423*n^7 - 2637558*n^6 - 120543840*n - n^11 - 66*n^10 - 39916800 - 32670*n^8)*a(n) + (-11028590*n^4 - 65*n^9 - n^10 - 2310945*n^5 - 1860*n^8 - 30810*n^7 - 326613*n^6 - 80627040*n - 39916800 - 34967140*n^3 - 70290936*n^2)*a(n + 1) + (3*n^10 - 39916800 + 187*n^9 + 5076*n^8 + 78558*n^7 + 761103*n^6 + 4757403*n^5 + 18949074*n^4 + 44946092*n^3 + 51046344*n^2 - 793440*n)*a(n + 2) + (-93139200 - 16175880*n^3 - 56394184*n^2 - 110513760*n - 2854446*n^4 - 14*n^8 - 840*n^7 - 21756*n^6 - 317520*n^5)*a(n + 3) + (45780*n^6 + 1785*n^7 + 111580320*n^2 + 660450*n^5 + 5856270*n^4 + 32645865*n^3 + 174636000 + 213450300*n + 30*n^8)*a(n + 4) + (-22952160 - 681*n^6 - 16419*n^5 - 217995*n^4 - 8082204*n^2 - 20896956*n - 12*n^7 - 1721253*n^3)*a(n + 5) + (1804641*n^3 + 9*n^7 + 14442*n^5 + 208920*n^4 + 32266080 + 9307488*n^2 + 26537388*n + 552*n^6)*a(n + 6) + (-158400 - 15160*n - 3994*n^3 - 31072*n^2 - 6*n^5 - 248*n^4)*a(n + 7) + (20123*n^3 + 706210*n + 27*n^5 + 170067*n^2 + 1148400 + 1173*n^4)*a(n + 8) + (7899*n^2 + 60684*n + 444*n^3 + 9*n^4 + 170940)*a(n + 9) + (-6894*n - 25740 - 18*n^3 - 612*n^2)*a(n + 10) + (-48*n - 528)*a(n + 11) + 24*a(n + 12).
Differential equation satisfied by the exponential generating function {F(0) = 1, 9*t^4*(t^4 + t - 2 + 3*t^2)^2*(d^2/dt^2)F(t) + 3*t*(t^4 + t - 2 + 3*t^2)*(10*t^8 + 34*t^3 - 16*t + 16*t^6 - 2*t^5 - 24*t^2 - 4*t^7 + 8 + t^10 - 14*t^4)*(d/dt)F(t) - t^3*(-22*t^2 + t^8 - 24*t^3 + t^9 + 8*t^7 + 14*t^6 + 15*t^5 + 12 + 16*t + 9*t^4)*(t^4 + t - 2 + 3*t^2)*F(t)}.
Sum_{a_2 = 0..n} Sum_{d_2 = 0..min(floor((3n - 2a_2)/2), floor(n/2), n - a_2)} Sum_{d_3 = 0..min(floor((3n - 2a_2 - 2d_2)/3), floor((n-2d_2)/3), n - a_2 - d_2} Sum_{d_1 = 0..min(3n - 2a_2 - 2d_2 - 3d_3, n - 2d_2 - 3d_3) Sum_{b = 0..min(floor((3n - 2a_2 - 2d_2 - 3d_3 - d_1)/4), floor((n - d_2 - d_3 - a_2)/2)} Sum_{c = 0..min(floor((3n - 2a_2 - 2d_2 - 3d_3 - d_1 - 4b)/6), floor((n - a_2 - 2b - d_2 - d_3)/2))} Sum_{a_1 = ceiling((3n - (2a_2 + 4b + 6c + d_1 + 2d_2 + 3d_3))/2)..floor((3n - (2a_2 + 4b + 6c + d_1 + 2d_2 + 3d_3))/2)} (-1)^(a_2 + b + d_2)*n!*(2a_1 + d_1)!/(2^(n + a_1 - c - d_3)*3^(n - a_2 - 2b - d_2 - c)*a_1!*a_2!*b!*c!*d_1!*d_2!*d_3!*(n - a_2 - 2b - d_2 - 2c - d_3)!). - Shanzhen Gao, Jun 05 2009
Recurrence (of order 8): 12*(27*n^4 - 423*n^3 + 2427*n^2 - 5639*n + 4384)*a(n) = 6*(n-1)*(81*n^4 - 1242*n^3 + 7011*n^2 - 15528*n + 10352)*a(n-1) + 3*(n-2)*(n-1)*(81*n^5 - 1269*n^4 + 7551*n^3 - 20841*n^2 + 29934*n - 16040)*a(n-2) - 3*(n-2)*(n-1)*(135*n^5 - 2115*n^4 + 13287*n^3 - 37537*n^2 + 46430*n - 21848)*a(n-3) + (n-3)*(n-2)*(n-1)*(567*n^5 - 9396*n^4 + 59895*n^3 - 169590*n^2 + 191744*n - 57040)*a(n-4) - 2*(n-4)*(n-3)*(n-2)*(n-1)*(135*n^4 - 1386*n^3 + 5034*n^2 - 6529*n + 648)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^5 - 1566*n^4 + 11367*n^3 - 37080*n^2 + 47872*n - 17424)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^4 - 315*n^3 + 1113*n^2 - 1433*n + 348)*a(n-7) - (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^4 - 315*n^3 + 1320*n^2 - 1946*n + 776)*a(n-8). - Vaclav Kotesovec, Oct 23 2023
a(n) ~ 3^(n/2) * n^(3*n/2) / (2^(n + 1/2) * exp(3*n/2 - sqrt(3*n) + 13/4)) * (1 + 119/(24*sqrt(3*n)) - 2519/(3456*n)). - Vaclav Kotesovec, Oct 27 2023, extended Oct 28 2023

Extensions

Edited and extended by Max Alekseyev, May 08 2010

A110100 a(n) is the number of 2-regular 3-hypergraphs on 3n labeled vertices. (In a 3-hypergraph, each hyper-edge is a proper 3-set; 2-regular implies that each vertex is in exactly 2 hyperedges.)

Original entry on oeis.org

1, 0, 75, 122220, 757275750, 12713292692100, 474415445827323000, 34461884930947363890000, 4431555785100983345799993000, 939388724430508823324694340500000
Offset: 0

Views

Author

Marni Mishna, Jul 11 2005

Keywords

Comments

P-recursive

Examples

			One of the 75 2-regular 3-hypergraphs on 6 vertices: {1,2,3} {4,5,6} {1,2,4} {3,5,6}.
		

Crossrefs

Formula

Recurrence: {a(0) = 1, a(1) = 0, (361631520*n + 1358261784*n^2 + 2841968052*n^3 + 3241507005*n^5 + 3725654130*n^4 + 1922779782*n^6 + 781684101*n^7 + 214347870*n^8 + 37889775*n^9 + 3897234*n^10 + 177147*n^11 + 39916800)*a(n) + (870112800*n + 1655958600*n^2 + 1805971896*n^3 + 561697416*n^5 + 1244162430*n^4 + 166255740*n^6 + 31125384*n^7 + 3346110*n^8 + 157464*n^9 + 199584000)*a(n + 1) + (70976400*n + 86362056*n^2 + 57212568*n^3 + 5161320*n^5 + 22352760*n^4 + 653184*n^6 + 34992*n^7 + 24393600)*a(n + 2) + (-468192*n-411840-198432*n^2-37152*n^3-2592*n^4)*a(n + 3) + 64*a(n + 4), a(2) = 75, a(3) = 122220}.
Differential equation satisfied by generating series A(t)=sum a(n) t^(3n)/(3n)!: {F(0) = 1, 16*t^5*(-2 + t^3)^3*(d^2/dt^2)F(t) + 8*t*(t^9-20*t^3 + 8)*(-2 + t^3)^2*(d/dt)F(t) + t^6*(t^3 + 10)*(t^3-4)*(-2 + t^3)^2*F(t)}.
a(n) ~ 3^(4*n+1/2) * n^(4*n) / (2^n * exp(4*n+1)). - Vaclav Kotesovec, Mar 11 2014

Extensions

Replaced broken link, Vaclav Kotesovec, Mar 11 2014

A108246 Number of labeled 2-regular graphs with no multiple edges, but loops are allowed (i.e., each vertex is endpoint of two (usual) edges or one loop).

Original entry on oeis.org

1, 1, 1, 2, 8, 38, 208, 1348, 10126, 86174, 819134, 8604404, 98981944, 1237575268, 16710431992, 242337783032, 3756693451772, 61991635990652, 1084943597643964, 20072853005524696, 391443701509660096, 8024999955144721256, 172544980412641191776
Offset: 0

Views

Author

Marni Mishna, Jun 17 2005

Keywords

Examples

			a(3) = 2: {(1,2) (2,3) (1,3)}, {(1,1) (2,2) (3,3)}.
		

Crossrefs

Binomial transform of A001205.
Row sums of A144161. - Alois P. Heinz, Jun 01 2009

Programs

  • Maple
    b:= proc(n) option remember; if n=0 then 1 elif n<3 then 0 else (n-1) *(b(n-1) +b(n-3) *(n-2)/2) fi end: a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 12 2008
  • Mathematica
    CoefficientList[Series[E^(-x^2/4+x/2)/Sqrt[1-x], {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

Linear recurrence satisfied by a(n): {a(2) = 1, a(0) = 1, (-n^2 - 3*n - 2)*a(n) + (4 + 2*n)*a(n+1) + (-2*n-6)*a(n+2) + 2*a(n+3), a(1) = 1}.
E.g.f.: exp(-t^2/4 + t/2)/sqrt(1-t). - Vladeta Jovovic, Aug 14 2006
a(n) ~ sqrt(2)*n^n/exp(n-1/4). - Vaclav Kotesovec, Oct 17 2012

Extensions

More terms from Alois P. Heinz, Sep 12 2008

A144161 Triangle read by rows: T(n,k) = number of simple graphs on n labeled nodes with k edges that are node-disjoint unions of undirected cycle subgraphs.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 1, 0, 0, 10, 15, 12, 1, 0, 0, 20, 45, 72, 70, 1, 0, 0, 35, 105, 252, 490, 465, 1, 0, 0, 56, 210, 672, 1960, 3720, 3507, 1, 0, 0, 84, 378, 1512, 5880, 16740, 31563, 30016, 1, 0, 0, 120, 630, 3024, 14700, 55800, 157815, 300160, 286884
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2008

Keywords

Examples

			T(4,3) = 4, because there are 4 simple graphs with 3 edges that are node-disjoint unions of undirected cycle subgraphs:
  .1.2. .1.2. .1-2. .1-2.
  ../|. .|\.. ..\|. .|/..
  .3-4. .3-4. .3.4. .3.4.
T(6,6) = C(6,3)/2+5!/2 = 70.
Triangle begins:
  1;
  1, 0;
  1, 0, 0;
  1, 0, 0,  1;
  1, 0, 0,  4,  3;
  1, 0, 0, 10, 15, 12;
  1, 0, 0, 20, 45, 72, 70;
  ...
		

Crossrefs

Columns k=0, 1+2, 3-4 give: A000012, A000004, A000292, A050534.
Main diagonal gives A001205.
Row sums give: A108246.

Programs

  • Maple
    T:= proc(n,k) option remember; local i,j; if k=0 then 1 elif k<0 or n
    				
  • Mathematica
    T[n_, k_] := T[n, k] = Module[{i, j}, If[k == 0, 1, If[k < 0 || n < k, 0, T[n - 1, k] + Sum[Product[n - i, {i, 1, j}]*T[n - 1 - j, k - j - 1], {j, 2, k}]/2 ]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
  • Python
    from sympy.core.cache import cacheit
    from operator import mul
    from functools import reduce
    @cacheit
    def T(n, k): return 1 if k==0 else 0 if k<0 or nIndranil Ghosh, Aug 07 2017

Formula

T(n,0) = 1, T(n,k) = 0 if k<0 or n

A053532 Expansion of e.g.f.: (1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6).

Original entry on oeis.org

1, 0, 0, 0, 3, 12, 60, 360, 2835, 24696, 237384, 2503440, 28941165, 363593340, 4930388892, 71759200968, 1115892704745, 18465120087120, 323965034820720, 6007037150742624, 117377605956803571, 2410702829834021820, 51917379915449131020
Offset: 0

Author

N. J. A. Sloane, Jan 16 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(a), k=4.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)^(-1/2)*Exp(-x/2 -x^2/4 -x^3/6) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    With[{m = 30}, CoefficientList[Series[(1-x)^(-1/2)*Exp[-x/2 -x^2/4 -x^3/6], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( (1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor((1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

a(n) ~ sqrt(2) * n^n / exp(n+11/12). - Vaclav Kotesovec, Aug 04 2014
Conjecture: D-finite with recurrence 2*a(n) +2*(-n+1)*a(n-1) -(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 06 2020

A053533 Expansion of e.g.f.: (1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6 -x^4/8).

Original entry on oeis.org

1, 0, 0, 0, 0, 12, 60, 360, 2520, 20160, 199584, 2147040, 25043040, 315485280, 4274281440, 62237343168, 968728662720, 16046598597120, 281802435747840, 5229395457937920, 102253297006250496, 2101387824575550720, 45281611027331723520
Offset: 0

Author

N. J. A. Sloane, Jan 16 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(a), k=5.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)^(-1/2)*Exp(-x/2 -x^2/4 -x^3/6 -x^4/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    With[{m = 30}, CoefficientList[Series[(1-x)^(-1/2)*Exp[-x/2 -x^2/4 -x^3/6 -x^4/8], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( (1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6 -x^4/8) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor((1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6 -x^4/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

a(n) ~ sqrt(2) * n^n / exp(n+25/24). - Vaclav Kotesovec, Aug 04 2014
Showing 1-10 of 25 results. Next