cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A295193 Number of regular simple graphs on n labeled nodes.

Original entry on oeis.org

1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
Offset: 1

Views

Author

Álvar Ibeas, Nov 16 2017

Keywords

Examples

			From _Gus Wiseman_, Dec 19 2018: (Start)
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
  1 2
  3 4
.
  4---1  3---1  2---1
  3---2  4---2  4---3
.
  3---4  4---3  4---2
  |   |  |   |  |   |
  1---2  1---2  1---3
.
  4---3
  | X |
  2---1
(End)
		

Crossrefs

Row sums of A059441.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,9}] (* Gus Wiseman, Dec 19 2018 *)
  • PARI
    \\ See link for program file.
    for(n=1, 10, print1(A295193(n), ", ")) \\ Andrew Howroyd, Aug 28 2019

Extensions

a(16)-a(18) from Andrew Howroyd, Aug 28 2019

A001205 Number of clouds with n points; number of undirected 2-regular labeled graphs; or number of n X n symmetric matrices with (0,1) entries, trace 0 and all row sums 2.

Original entry on oeis.org

1, 0, 0, 1, 3, 12, 70, 465, 3507, 30016, 286884, 3026655, 34944085, 438263364, 5933502822, 86248951243, 1339751921865, 22148051088480, 388246725873208, 7193423109763089, 140462355821628771, 2883013994348484940
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways of covering K_n with cycles of length >= 3. Also number of 'frames' on n lines: given n lines in general position (none parallel and no three concurrent), a frame is a subset of n of the e C(n,2) points of intersection such that no three points are on the same line. - Mitch Harris, Jul 06 2006

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 410-411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 276 and 279.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.7.
  • Ph. Flajolet, Singular combinatorics, pp. 561-571, Proc. Internat. Congr. Math., Beijing 2002, Higher Education Press, Beijing, 2002, Vol III.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.6b, 3.3.34.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8. Also problems 5.23 and 5.15(a), case k=3.
  • Z. Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009] [apparently unpublished as of 2016]
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 77, Eq. 3.9.1.
  • W. A. Whitworth, Choice and Chance, Bell, 1901, p. 269, ex. 160.

Crossrefs

Cf. A000985, A000986, A002137. A diagonal of A059441 and A144163.

Programs

  • Maple
    a := n -> (-1)^n*n!*add((3/4)^k*binomial(-1/2, n-k)*hypergeom([1/2,-k], [1/2-n+k], 1/3)/ k!, k=0..n): seq(simplify(a(n)), n=0..21); # Peter Luschny, Aug 26 2017
  • Mathematica
    m = 21; CoefficientList[ Series[ Exp[-x/2 - x^2/4] / Sqrt[1-x], {x, 0, m}], x]*Table[n!, {n, 0, m}] (* Jean-François Alcover, Jun 21 2011, after e.g.f. *)
  • Maxima
    a(n):=sum(sum(binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-i),i,0,k),k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 25 2017 */
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(-x/2-x^2/4+x*O(x^n))/sqrt(1-x+x*O(x^n)),n))
    

Formula

a(n) ~ n!*exp(-3/4)/sqrt(Pi*n).
E.g.f.: exp(-x/2-x^2/4)/sqrt(1-x).
D-finite with recurrence a(n+1) = n*(a(n)+a(n-2)*(n-1)/2).
1/4^n * Sum_{b=0..floor(n/2)} Sum_{g=0..n-2*b} (-1)^(b+g) * 2^(2b+g) * n! * (2n-4b-2g)! / (b! * g! * (n-2b-g)!^2). - Shanzhen Gao, Jun 05 2009
a(n) = (-1)^n*n!*Sum_{k=0..n}(3/4)^k*binomial(-1/2, n - k)*hypergeom([1/2, -k], [1/2 - n + k], 1/3)/ k!. - Peter Luschny, Aug 26 2017

A002829 Number of trivalent (or cubic) labeled graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 70, 19355, 11180820, 11555272575, 19506631814670, 50262958713792825, 187747837889699887800, 976273961160363172131825, 6840300875426184026353242750, 62870315446244013091262178375075, 741227949070136911068308523257857500
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
  • R. W. Robinson, Computer print-out, no date. Gives first 30 terms.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A059441. Cf. A005814.
See A004109 for connected graphs of this type.

Programs

  • Maple
    From R. J. Mathar, Oct 31 2010: (Start)
    A002829aux := proc(i) local a,j,k ; a := 0 ; for j from 0 to i do for k from 0 to 2*(i-j) do a := a+(-1)^(j+k)/j!*doublefactorial(2*i+2*k-1)/3^k/k!/(2*i-2*j-k)! ; end do: end do: a*3^i/2^i ; end proc:
    A002829 := proc(n) (2*n)!/6^n*add( A002829aux(i)/(n-i)!,i=0..n) ; end proc: seq(A002829(n),n=0..6) ; (End)
    egf := hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2)) * exp(-ln(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1):
    ser := convert(series(egf,x=0,30),polynom):
    seq(coeff(ser,x,i) * (2*i)!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
  • Mathematica
    Flatten[{1,RecurrenceTable[{2 (-3+n) (-2+n) (-1+n) (-7+2 n) (-5+2 n) (-3+2 n) (-1+2 n) (-4+3 n) (-1+3 n) a[-4+n]-2 (-2+n) (-1+n) (-5+2 n) (-3+2 n) (-1+2 n) (-1+3 n) (43-42 n+9 n^2) a[-3+n]-(-1+n) (-3+2 n) (-1+2 n) (-104+501 n-441 n^2+108 n^3) a[-2+n]-9 (-1+n) (-1+2 n) (-7+3 n) (2-4 n+3 n^2) a[-1+n]+3 (-7+3 n) (-4+3 n) a[n]==0,a[1]==0,a[2]==1,a[3]==70,a[4]==19355},a,{n,1,15}]}] (* Vaclav Kotesovec, Mar 11 2014 *)
    terms = 14;
    egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[ 1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
    CoefficientList[egf, x] (2 Range[0, terms-1])! (* Jean-François Alcover, Nov 23 2018, after Mark van Hoeij *)
  • PARI
    a(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ Michel Marcus, Jan 18 2018

Formula

From Vladeta Jovovic, Mar 25 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(2 * n) * x^n/(2 * n)! satisfies differential equation 6 * x^2 * (-x^2 - 2 * x + 2) * (d^2/dx^2)f(x) - (x^5 + 6 * x^4 + 6 * x^3 - 32 * x + 8) * (d/dx)f(x) + (x/6) * (-x^2 - 2 * x + 2)^2 * f(x) = 0.
Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 24 * n + 48) * v(n - 1) + (72 * n^3 - 432 * n^2 + 788 * n - 428) * v(n - 2) + (36 * n^4 - 324 * n^3 + 1052 * n^2 - 1428 * n + 664) * v(n - 3) + (36 * n^4 - 360 * n^3 + 1260 * n^2 - 1800 * n + 864) * v(n - 4) + (6 * n^5 - 94 * n^4 + 550 * n^3 - 1490 * n^2 + 1844 * n - 816) * v(n - 5) + (-n^5 + 15 * n^4 - 85 * n^3 + 225 * n^2 - 274 * n + 120) * v(n - 6) = 0. (End)
a(n) = Sum_{i=0..2*n} Sum_{k=0..min(floor((3*n-i)/3), floor((2*n-i)/2))} Sum_{j=0..min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2))} ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2))*exp(-log(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1). Multiply x^i by (2*i)! to get the generating function. - Mark van Hoeij, Nov 07 2011
From Vaclav Kotesovec, Mar 11 2014: (Start)
D-finite with recurrence: 3*(3*n-7)*(3*n-4)*a(n) = 9*(n-1)*(2*n-1)*(3*n-7)*(3*n^2 - 4*n + 2)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(108*n^3 - 441*n^2 + 501*n - 104)*a(n-2) + 2*(n-2)*(n-1)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-1)*(9*n^2 - 42*n + 43)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-4)*(3*n-1)*a(n-4).
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n+2). (End)

Extensions

More terms from Vladeta Jovovic, Mar 25 2001

A051031 Triangle read by rows: T(n,r) is the number of not necessarily connected r-regular graphs with n nodes, 0 <= r < n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 2, 0, 2, 0, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 0, 4, 0, 16, 0, 4, 0, 1, 1, 1, 5, 21, 60, 60, 21, 5, 1, 1, 1, 0, 6, 0, 266, 0, 266, 0, 6, 0, 1, 1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1, 1, 0, 10, 0, 10786, 0, 367860, 0, 10786
Offset: 1

Views

Author

Keywords

Comments

A graph in which every node has r edges is called an r-regular graph. The triangle is symmetric because if an n-node graph is r-regular, than its complement is (n - 1 - r)-regular and two graphs are isomorphic if and only if their complements are isomorphic.
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A295193. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 08 2020

Examples

			T(8,3) = 6. Edge-lists for the 6 3-regular 8-node graphs:
  Graph 1: 12, 13, 14, 23, 24, 34, 56, 57, 58, 67, 68, 78
  Graph 2: 12, 13, 14, 24, 34, 26, 37, 56, 57, 58, 68, 78
  Graph 3: 12, 13, 23, 14, 47, 25, 58, 36, 45, 67, 68, 78
  Graph 4: 12, 13, 23, 14, 25, 36, 47, 48, 57, 58, 67, 68
  Graph 5: 12, 13, 24, 34, 15, 26, 37, 48, 56, 57, 68, 78
  Graph 6: 12, 23, 34, 45, 56, 67, 78, 18, 15, 26, 37, 48.
Triangle starts
  1;
  1, 1;
  1, 0, 1;
  1, 1, 1,  1;
  1, 0, 1,  0,    1;
  1, 1, 2,  2,    1,    1;
  1, 0, 2,  0,    2,    0,    1;
  1, 1, 3,  6,    6,    3,    1,    1;
  1, 0, 4,  0,   16,    0,    4,    0,  1;
  1, 1, 5, 21,   60,   60,   21,    5,  1, 1;
  1, 0, 6,  0,  266,    0,  266,    0,  6, 0, 1;
  1, 1, 9, 94, 1547, 7849, 7849, 1547, 94, 9, 1, 1;
  ...
		

Crossrefs

Row sums give A005176.
Regular graphs of degree k: A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).

Formula

T(n,r) = A068934(n,r) + A068933(n,r).

Extensions

More terms and comments from David Wasserman, Feb 22 2002
More terms from Eric W. Weisstein, Oct 19 2002
Description corrected (changed 'orders' to 'degrees') by Jason Kimberley, Sep 06 2009
Extended to the sixteenth row (in the b-file) by Jason Kimberley, Sep 24 2009

A333157 Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 09 2020

Keywords

Comments

T(n,k) is the number of k-regular symmetric relations on n labeled nodes.
T(n,k) is the number of k-regular graphs with half-edges on n labeled vertices.
Terms may be computed without generating all graphs by enumerating the number of graphs by degree sequence. A PARI program showing this technique is given below. Burnside's lemma as applied in A122082 and A000666 can be used to extend this method to the case of unlabeled vertices A333159 and A333161 respectively.

Examples

			Triangle begins:
  1,
  1,   1;
  1,   2,     1;
  1,   4,     4,      1;
  1,  10,    18,     10,       1;
  1,  26,   112,    112,      26,      1;
  1,  76,   820,   1760,     820,     76,     1;
  1, 232,  6912,  35150,   35150,   6912,   232,   1;
  1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;
  ...
		

Crossrefs

Row sums are A322698.
Central coefficients are A333164.
Cf. A188448 (transposed as array).

Programs

  • PARI
    \\ See script in A295193 for comments.
    GraphsByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([x^0,1])));
      my(acc(p,v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r,p,i,q,v,e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p,i)); for(k=0,t,self()(r,p,i-1,(t-k+x*k)*x^i+q,binomial(t,k)*v,e+k)))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i,1]); recurse(n-k, p, poldegree(p), 0, src[i,2], 0))); Mat(M);
    }
    Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p,r)->poldegree(p)-valuation(p,x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i,1], d=poldegree(p)); v[1+d]+=M[i,2]; if(pollead(p)==n, v[2+d]+=M[i,2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}
    for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020

Formula

T(n,k) = T(n,n-k).

A005815 Number of 4-valent labeled graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462606, 5188453830, 480413921130, 52113376310985, 6551246596501035, 945313907253606891, 155243722248524067795, 28797220460586826422720
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005814, A002829, A005816, A272905 (connected). A diagonal of A059441.

Programs

  • Maple
    egf := (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16));
    ser := convert(series(egf,x=0,40),polynom):
    seq(coeff(ser,x,i)*i!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
  • Mathematica
    max = 17; f[x_] := HypergeometricPFQ[{1/4, 3/4}, {}, -12*x*(x + 2)*(x - 1)/(x^3 + 2*x^2 - 6*x - 6)^2]*Exp[-x*(x^2 - 6)/(8*x + 16)]/(1 + x - x^2/3 - x^3/6)^ (1/2); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Jun 19 2012, from e.g.f. *)

Formula

From Vladeta Jovovic, Mar 26 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(n)*x^n/(n)! satisfies the differential equation 16*x^2*(x - 1)^2*(x + 2)^2*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)*(d^2/dx^2)y(x) - 4*(x^13 + 4*x^12 - 16*x^10 - 10*x^9 - 36*x^8 - 220*x^7 - 348*x^6 - 48*x^5 + 200*x^4 - 336*x^3 - 240*x^2 + 416*x - 96)*(d/dx)y(x) - x^4*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)^2*y(x) = 0.
Recurrence: a(n) = - 1/384*(( - 256*n^2 - 896*n + 1152)*a(n - 1) + (768*n^3 - 3648*n^2 + 5568*n - 2688)*a(n - 2) + ( - 192*n^4 + 3264*n^3 - 14784*n^2 + 24384*n - 12672)*a(n - 3) + (224*n^6 - 4512*n^5 + 36304*n^4 - 148160*n^3 + 320016*n^2 - 341728*n + 137856)*a(n - 5) + ( - 640*n^5 + 8800*n^4 - 46400*n^3 + 116000*n^2 - 135360*n + 57600)*a(n - 4) + ( - 24*n^10 + 1320*n^9 - 31680*n^8 + 435600*n^7 - 3786552*n^6 + 21649320*n^5 - 82006320*n^4 + 201828000*n^3 - 306085824*n^2 + 255087360*n - 87091200)*a(n - 11) + (64*n^10 - 3480*n^9 + 82692*n^8 - 1127232*n^7 + 9726024*n^6 - 55255032*n^5 + 208179908*n^4 - 510068208*n^3 + 770738352*n^2 - 640484928*n + 218211840)*a(n - 9) + (16*n^11 - 992*n^10 + 27256*n^9 - 437160*n^8 + 4536288*n^7 - 31876656*n^6 + 154182488*n^5 - 510784360*n^4 + 1128552896*n^3 - 1570313952*n^2 + 1223830656*n - 397716480)*a(n - 10) + ( - 128*n^8 + 5488*n^7 - 94576*n^6 + 864976*n^5 - 4606672*n^4 + 14604352*n^3 - 26753984*n^2 + 25611264*n - 9630720)*a(n - 7) + (16*n^9 - 576*n^8 + 8704*n^7 - 71680*n^6 + 348880*n^5 - 1013824*n^4 + 1673376*n^3 - 1333120*n^2 + 226944*n + 161280)*a(n - 8) + (128*n^7 - 2192*n^6 + 12048*n^5 - 8240*n^4 - 151248*n^3 + 565312*n^2 - 765248*n + 349440)*a(n - 6) + ( - 4*n^13 + 364*n^12 - 14924*n^11 + 364364*n^10 - 5897892*n^9 + 66678612*n^8 - 540145892*n^7 + 3163772612*n^6 - 13344475144*n^5 + 39830815024*n^4 - 81255012384*n^3 + 106386868224*n^2 - 79211036160*n + 24908083200)*a(n - 14) + ( - 4*n^13 + 360*n^12 - 14612*n^11 + 353496*n^10 - 5674812*n^9 + 63680760*n^8 - 512439356*n^7 + 2983811688*n^6 - 12520194544*n^5 + 37201987680*n^4 - 75598952832*n^3 + 98660630016*n^2 - 73265264640*n + 22992076800)*a(n - 13) + ( - 16*n^12 + 1244*n^11 - 43208*n^10 + 884620*n^9 - 11860728*n^8 + 109396452*n^7 - 709293464*n^6 + 3243764260*n^5 - 10331326456*n^4 + 22203205904*n^3 - 30301280928*n^2 + 23300910720*n - 7504358400)*a(n - 12) + ( - n^14 + 105*n^13 - 5005*n^12 + 143325*n^11 - 2749747*n^10 + 37312275*n^9 - 368411615*n^8 + 2681453775*n^7 - 14409322928*n^6 + 56663366760*n^5 - 159721605680*n^4 + 310989260400*n^3 - 392156797824*n^2 + 283465647360*n - 87178291200)*a(n - 15)). (End)
a(n) = Sum_{d=0..floor(n/2), c=0..floor(n/2-d), b=0..(n-2c-2d), f=0..(n-2c-2d-b), k=0..min(n-b-2c-2d-f, 2n-2f-2b-3c-4d), j=0..floor(k/2+f)} ((-1)^(k+2f-j+d)*n!*(k+2f)!(2(2n-k-2f-2b-3c-4d))!) / (2^(5n-2k-2f-3b-8c-7d) * 3^(n-b-c-2d-k-f)*(2n-k-2f-2b-3c-4d)!*(k+2f-2j)!*j!*b!*c!*d!*k!*f!*(n-b-2c-2d-k-f)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16)). - Mark van Hoeij, Nov 07 2011
a(n) ~ n^(2*n) * 2^(n+1/2) / (3^n * exp(2*n+15/4)). - Vaclav Kotesovec, Mar 11 2014

Extensions

More terms from Vladeta Jovovic, Mar 26 2001

A333351 Array read by antidiagonals: T(n,k) is the number of k-regular loopless multigraphs on n labeled nodes, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 0, 6, 0, 1, 1, 0, 1, 1, 10, 22, 15, 1, 1, 0, 1, 0, 15, 0, 130, 0, 1, 1, 0, 1, 1, 21, 158, 760, 822, 105, 1, 1, 0, 1, 0, 28, 0, 3355, 0, 6202, 0, 1, 1, 0, 1, 1, 36, 654, 12043, 93708, 190050, 52552, 945, 1, 1, 0, 1, 0, 45, 0, 36935, 0, 3535448, 0, 499194, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 15 2020

Keywords

Examples

			Array begins:
=================================================================
n\k | 0   1    2      3       4        5         6          7
----+------------------------------------------------------------
  0 | 1   1    1      1       1        1         1          1 ...
  1 | 1   0    0      0       0        0         0          0 ...
  2 | 1   1    1      1       1        1         1          1 ...
  3 | 1   0    1      0       1        0         1          0 ...
  4 | 1   3    6     10      15       21        28         36 ...
  5 | 1   0   22      0     158        0       654          0 ...
  6 | 1  15  130    760    3355    12043     36935     100135 ...
  7 | 1   0  822      0   93708        0   3226107          0 ...
  8 | 1 105 6202 190050 3535448 45163496 431400774 3270643750 ...
  ...
		

Crossrefs

Rows n=4..6 are A000217(n+1), A244868 (with interspersed zeros), A244878.
Columns k=0..4 are A000012, A123023, A002137, A108243 (with interspersed zeros), A367497.
Cf. A059441 (graphs), A333157, A333330 (unlabeled nodes), A333467 (with loops).

Programs

  • PARI
    MultigraphsByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, limit, src[i, 1], 0, src[i, 2], 0))); Mat(M);
    }
    T(n,k)={if((n%2&&k%2)||(n==1&&k>0), 0, vecsum(MultigraphsByDegreeSeq(n, k, (p,r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[,2]))}
    { for(n=0, 8, for(k=0, 7, print1(T(n,k), ", ")); print) }

A322635 Number of regular graphs with loops on n labeled vertices.

Original entry on oeis.org

2, 4, 4, 24, 78, 1908, 23368, 1961200, 75942758, 25703384940, 4184912454930, 4462909435830552, 2245354417775573206, 10567193418810168583576, 24001585002447984453495392, 348615956932626441906675011568, 2412972383955442904868321667433106, 162906453913051798826796439651249753404
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. A loop adds 2 to the degree of its vertex.

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2n}],{n,6}]
  • PARI
    for(n=1, 10, print1(A322635(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(11)-a(18) from Andrew Howroyd, Aug 28 2019

A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Examples

			Triangle begins:
  1
  1       1
  1       3       1
  1       9       7       1
  1      25      37       5       1
  1      75     207      85      21       1
  1     231    1347     525     591       7       1
  1     763   10125   21385   23551    3535     113       1
  1    2619   86173  180201 1216701   31647   30997       9       1
		

Crossrefs

Programs

  • Mathematica
    Table[If[k==0,1,Sum[Binomial[n,sup]*SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[sup],{2}]}],Sequence@@Table[{x[i],0,k},{i,sup}]],{sup,n}]],{n,8},{k,0,n-1}]

Formula

T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - Andrew Howroyd, Dec 26 2020

A322698 Number of regular graphs with half-edges on n labeled vertices.

Original entry on oeis.org

1, 2, 4, 10, 40, 278, 3554, 84590, 3776280, 317806466, 50710452574, 15414839551538, 8964708979273634, 10008446308186072290, 21518891146915893435358, 89320970210116481106835986, 717558285660687970023516336792, 11176382741327158622885664697124082, 338202509574712032788035618665293979610
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. A half-edge is like a loop except it only adds 1 to the degree of its vertex.

Examples

			The a(3) = 10 edge sets:
  {}
  {{1},{2,3}}
  {{3},{1,2}}
  {{2},{1,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
  {{1},{3},{1,2},{2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Union/@Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,6}]
  • PARI
    for(n=1, 10, print1(A322698(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(10)-a(18) from Andrew Howroyd, Aug 28 2019
Showing 1-10 of 23 results. Next