cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A295193 Number of regular simple graphs on n labeled nodes.

Original entry on oeis.org

1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
Offset: 1

Views

Author

Álvar Ibeas, Nov 16 2017

Keywords

Examples

			From _Gus Wiseman_, Dec 19 2018: (Start)
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
  1 2
  3 4
.
  4---1  3---1  2---1
  3---2  4---2  4---3
.
  3---4  4---3  4---2
  |   |  |   |  |   |
  1---2  1---2  1---3
.
  4---3
  | X |
  2---1
(End)
		

Crossrefs

Row sums of A059441.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,9}] (* Gus Wiseman, Dec 19 2018 *)
  • PARI
    \\ See link for program file.
    for(n=1, 10, print1(A295193(n), ", ")) \\ Andrew Howroyd, Aug 28 2019

Extensions

a(16)-a(18) from Andrew Howroyd, Aug 28 2019

A059441 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			1;
1,   1;
1,   0,       1;
1,   3,       3,        1;
1,   0,      12,        0,          1;
1,  15,      70,       70,         15,    1;
1,   0,     465,        0,        465,    0,   1;
1, 105,    3507,    19355,      19355, 3507, 105, 1;
1,   0,   30016,        0,    1024380, ...;
1, 945,  286884, 11180820,   66462606, ...;
1,   0, 3026655,        0, 5188453830, ...;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.

Crossrefs

Row sums are A295193.
Columns: A123023 (k=1), A001205 (k=2), A002829 (k=3, with alternating zeros), A005815 (k=4), A338978 (k=5, with alternating zeros), A339847 (k=6).
Cf. A051031 (unlabeled case), A324163 (connected case), A333351 (multigraphs).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
  • PARI
    for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(37)-a(55) from Andrew Howroyd, Aug 25 2017

A322698 Number of regular graphs with half-edges on n labeled vertices.

Original entry on oeis.org

1, 2, 4, 10, 40, 278, 3554, 84590, 3776280, 317806466, 50710452574, 15414839551538, 8964708979273634, 10008446308186072290, 21518891146915893435358, 89320970210116481106835986, 717558285660687970023516336792, 11176382741327158622885664697124082, 338202509574712032788035618665293979610
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. A half-edge is like a loop except it only adds 1 to the degree of its vertex.

Examples

			The a(3) = 10 edge sets:
  {}
  {{1},{2,3}}
  {{3},{1,2}}
  {{2},{1,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
  {{1},{3},{1,2},{2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Union/@Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,6}]
  • PARI
    for(n=1, 10, print1(A322698(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(10)-a(18) from Andrew Howroyd, Aug 28 2019

A322659 Number of connected regular simple graphs on n labeled vertices.

Original entry on oeis.org

1, 1, 1, 4, 13, 146, 826, 44808, 1074557, 155741296, 10381741786, 6939251270348, 2203360264480750, 4186526735251514044, 3747344007864300197810, 35041787059621536192399824, 156277111373298355107598128061, 4142122641757597729416733678931968
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

A graph is regular if all vertices have the same degree.

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n==1,1,Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],SameQ@@Length/@Split[Sort[Join@@#]],Length[csm[#]]==1]&]]],{n,6}]

Extensions

a(8)-a(15) from Andrew Howroyd, Dec 23 2018
a(16)-a(18) from Andrew Howroyd, Sep 02 2019

A322704 Number of regular hypergraphs on n labeled vertices with no singletons.

Original entry on oeis.org

1, 1, 2, 4, 80, 209944
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree.

Examples

			The a(3) = 4 edge-sets:
  {}
  {{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2^n-n-1}],{n,1,5}]
Showing 1-5 of 5 results.