cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A059441 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			1;
1,   1;
1,   0,       1;
1,   3,       3,        1;
1,   0,      12,        0,          1;
1,  15,      70,       70,         15,    1;
1,   0,     465,        0,        465,    0,   1;
1, 105,    3507,    19355,      19355, 3507, 105, 1;
1,   0,   30016,        0,    1024380, ...;
1, 945,  286884, 11180820,   66462606, ...;
1,   0, 3026655,        0, 5188453830, ...;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.

Crossrefs

Row sums are A295193.
Columns: A123023 (k=1), A001205 (k=2), A002829 (k=3, with alternating zeros), A005815 (k=4), A338978 (k=5, with alternating zeros), A339847 (k=6).
Cf. A051031 (unlabeled case), A324163 (connected case), A333351 (multigraphs).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
  • PARI
    for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(37)-a(55) from Andrew Howroyd, Aug 25 2017

A333157 Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 09 2020

Keywords

Comments

T(n,k) is the number of k-regular symmetric relations on n labeled nodes.
T(n,k) is the number of k-regular graphs with half-edges on n labeled vertices.
Terms may be computed without generating all graphs by enumerating the number of graphs by degree sequence. A PARI program showing this technique is given below. Burnside's lemma as applied in A122082 and A000666 can be used to extend this method to the case of unlabeled vertices A333159 and A333161 respectively.

Examples

			Triangle begins:
  1,
  1,   1;
  1,   2,     1;
  1,   4,     4,      1;
  1,  10,    18,     10,       1;
  1,  26,   112,    112,      26,      1;
  1,  76,   820,   1760,     820,     76,     1;
  1, 232,  6912,  35150,   35150,   6912,   232,   1;
  1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;
  ...
		

Crossrefs

Row sums are A322698.
Central coefficients are A333164.
Cf. A188448 (transposed as array).

Programs

  • PARI
    \\ See script in A295193 for comments.
    GraphsByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([x^0,1])));
      my(acc(p,v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r,p,i,q,v,e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p,i)); for(k=0,t,self()(r,p,i-1,(t-k+x*k)*x^i+q,binomial(t,k)*v,e+k)))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i,1]); recurse(n-k, p, poldegree(p), 0, src[i,2], 0))); Mat(M);
    }
    Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p,r)->poldegree(p)-valuation(p,x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i,1], d=poldegree(p)); v[1+d]+=M[i,2]; if(pollead(p)==n, v[2+d]+=M[i,2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}
    for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020

Formula

T(n,k) = T(n,n-k).

A333160 Number of non-isomorphic n X n symmetric binary matrices with an equal number of ones in every row and column up to permutation of rows and columns.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 17, 36, 146, 1066, 15419, 406684, 19284912, 1635874946, 249424764407, 68725494158824, 34418706513939926, 31487353344361957012, 52887877379630894268187, 163777247316556715401451972, 939121048579630147375554814224
Offset: 0

Views

Author

Andrew Howroyd, Mar 10 2020

Keywords

Comments

a(n) is the number of regular bicolored graphs on 2n unlabeled nodes which are invariant when the two color classes are interchanged.

Examples

			The a(2) = 3 matrices are:
  [0 0]  [1 0]  [1 1]
  [0 0]  [0 1]  [1 1]
		

Crossrefs

Row sums of A333159.

A322704 Number of regular hypergraphs on n labeled vertices with no singletons.

Original entry on oeis.org

1, 1, 2, 4, 80, 209944
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree.

Examples

			The a(3) = 4 edge-sets:
  {}
  {{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2^n-n-1}],{n,1,5}]

A333162 Number of regular graphs on n unlabeled nodes with half-edges.

Original entry on oeis.org

1, 2, 4, 6, 11, 16, 38, 78, 304, 1672, 19630, 450154, 20198620, 1673850034, 252574719718, 69216356716672, 34559361669877526, 31561018687380681802, 52958472442027295300520, 163901411216705405946164728, 939523329928455089556983977702
Offset: 0

Views

Author

Andrew Howroyd, Mar 11 2020

Keywords

Comments

A half-edge is like a loop except it only adds 1 to the degree of its vertex.

Crossrefs

Row sums of A333161.
Showing 1-5 of 5 results.