cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059441 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			1;
1,   1;
1,   0,       1;
1,   3,       3,        1;
1,   0,      12,        0,          1;
1,  15,      70,       70,         15,    1;
1,   0,     465,        0,        465,    0,   1;
1, 105,    3507,    19355,      19355, 3507, 105, 1;
1,   0,   30016,        0,    1024380, ...;
1, 945,  286884, 11180820,   66462606, ...;
1,   0, 3026655,        0, 5188453830, ...;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.

Crossrefs

Row sums are A295193.
Columns: A123023 (k=1), A001205 (k=2), A002829 (k=3, with alternating zeros), A005815 (k=4), A338978 (k=5, with alternating zeros), A339847 (k=6).
Cf. A051031 (unlabeled case), A324163 (connected case), A333351 (multigraphs).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
  • PARI
    for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(37)-a(55) from Andrew Howroyd, Aug 25 2017

A322635 Number of regular graphs with loops on n labeled vertices.

Original entry on oeis.org

2, 4, 4, 24, 78, 1908, 23368, 1961200, 75942758, 25703384940, 4184912454930, 4462909435830552, 2245354417775573206, 10567193418810168583576, 24001585002447984453495392, 348615956932626441906675011568, 2412972383955442904868321667433106, 162906453913051798826796439651249753404
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. A loop adds 2 to the degree of its vertex.

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2n}],{n,6}]
  • PARI
    for(n=1, 10, print1(A322635(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(11)-a(18) from Andrew Howroyd, Aug 28 2019

A324163 Triangle read by rows: T(n,k) is the number of connected k-regular simple graphs on n labeled vertices, (0 <= k < n).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 12, 0, 1, 0, 0, 60, 70, 15, 1, 0, 0, 360, 0, 465, 0, 1, 0, 0, 2520, 19320, 19355, 3507, 105, 1, 0, 0, 20160, 0, 1024380, 0, 30016, 0, 1, 0, 0, 181440, 11166120, 66462480, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 02 2019

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0,     1;
  0, 0,     3,     1;
  0, 0,    12,     0,       1;
  0, 0,    60,    70,      15,    1;
  0, 0,   360,     0,     465,    0,     1;
  0, 0,  2520, 19320,   19355, 3507,   105, 1;
  0, 0, 20160,     0, 1024380,    0, 30016, 0, 1;
  ...
		

Crossrefs

Column k=2 is A001710(n-1) for n >= 3.
Column k=3 is aerated A004109.
Column k=4 is A272905.
Row sums are A322659.
Cf. A059441 (not necessarily connected), A068934 (unlabeled).

Formula

Column k is the logarithmic transform of column k of A059441.
Showing 1-3 of 3 results.