cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059441 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			1;
1,   1;
1,   0,       1;
1,   3,       3,        1;
1,   0,      12,        0,          1;
1,  15,      70,       70,         15,    1;
1,   0,     465,        0,        465,    0,   1;
1, 105,    3507,    19355,      19355, 3507, 105, 1;
1,   0,   30016,        0,    1024380, ...;
1, 945,  286884, 11180820,   66462606, ...;
1,   0, 3026655,        0, 5188453830, ...;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.

Crossrefs

Row sums are A295193.
Columns: A123023 (k=1), A001205 (k=2), A002829 (k=3, with alternating zeros), A005815 (k=4), A338978 (k=5, with alternating zeros), A339847 (k=6).
Cf. A051031 (unlabeled case), A324163 (connected case), A333351 (multigraphs).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
  • PARI
    for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(37)-a(55) from Andrew Howroyd, Aug 25 2017

A004109 Number of connected trivalent (or cubic) labeled graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 70, 19320, 11166120, 11543439600, 19491385914000, 50233275604512000, 187663723374359232000, 975937986889287117696000, 6838461558851342749449120000, 62856853767402275979616458240000, 741099150663748252073618880960000000, 10997077750618335243742188527076864000000
Offset: 0

Views

Author

Keywords

Examples

			From _R. J. Mathar_, Oct 18 2018: (Start)
For n=3, 2*n=6, the A002851(n)=2 graphs have multiplicities of 10 and 60 (sum 70).
For n=4, 2*n=8, the A002851(n)=5 graphs have multiplicities of 3360, 840, 2520, 10080 and 2520, (sum 19320). (The orders of the five Aut-groups are 8!/3360 =12, 8!/840=48, 8!/2520 =16, 8!/10080=4 and 8!/2520=16, i.e., all larger than 1 as indicated in A204328). (End)
		

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • R. W. Robinson, Computer print-out, no date. Gives first 29 terms.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A002829 for not-necessarily-connected graphs, A002851 for connected unlabeled cases.
Cf. A324163.

Formula

Conjecture: a(n) ~ 2^(n + 1/2) * 3^n * n^(3*n) / exp(3*n+2). - Vaclav Kotesovec, Feb 17 2024

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 02 2019

A322659 Number of connected regular simple graphs on n labeled vertices.

Original entry on oeis.org

1, 1, 1, 4, 13, 146, 826, 44808, 1074557, 155741296, 10381741786, 6939251270348, 2203360264480750, 4186526735251514044, 3747344007864300197810, 35041787059621536192399824, 156277111373298355107598128061, 4142122641757597729416733678931968
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

A graph is regular if all vertices have the same degree.

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n==1,1,Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],SameQ@@Length/@Split[Sort[Join@@#]],Length[csm[#]]==1]&]]],{n,6}]

Extensions

a(8)-a(15) from Andrew Howroyd, Dec 23 2018
a(16)-a(18) from Andrew Howroyd, Sep 02 2019

A272905 Number of connected 4-regular (or quartic) labeled graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462480, 5188446900, 480413448900, 52113339432000, 6551243302804200, 945313572845842200, 155243683741953807000, 28797215441570535960000, 5993001571565164940784000, 1390759438984816084192008000
Offset: 1

Views

Author

Catherine Greenhill, May 09 2016

Keywords

Comments

The e.g.f. for this sequence is the logarithm of the e.g.f. for the sequence of all 4-regular labeled graphs on n nodes (see A005815), using Wilf's exponential formula.

Examples

			The triangle of 4-valend labeled graphs with n>=1 nodes and 1<=k<=n components (row sums A005815) starts:
  0;
  0,0;
  0,0,0;
  0,0,0,0;
  1,0,0,0,0;
  15,0,0,0,0,0;
  465,0,0,0,0,0,0;
  19355,0,0,0,0,0,0,0;
  1024380,0,0,0,0,0,0,0,0;
  66462480,126,0,0,0,0,0,0,0,0;
  5188446900,6930,0,0,0,0,0,0,0,0,0;
  480413448900,472230,0,0,0,0,0,0,0,0,0,0;
  52113339432000,36878985,0,0,0,0,0,0,0,0,0,0,0;
  6551243302804200,3293696835,0,0,0,0,0,0,0,0,0,0,0,0;
  945313572845842200,334407638565,126126,0,0,0,0,0,0,0,0,0,0,0,0;
  155243683741953807000,38506555125675,15135120,0,0,0,0,0,0,0,0,0,0,0,0,0; - _R. J. Mathar_, Apr 29 2019
		

References

  • H. S. Wilf, generatingfunctionology (2nd edn.), Academic Press, 1994, Corollary 3.4.1, page 81.

Crossrefs

Column k=4 of A324163.
See A005815 for not-necessarily-connected labeled 4-regular graphs.

Programs

  • Maple
    egf := log((1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4], [], -12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16)));
    ser := convert(series(egf, x=0, 40), polynom):
    seq(coeff(ser, x, i)*i!, i=0..degree(ser));
  • Mathematica
    g[x_] := Log[(Exp[x*(6-x^2)/8/(2+x)]* HypergeometricPFQ[{1/4, 3/4}, {}, ((12 (1-x) * x *(2 + x))/(x^3 + 2*x^2 - 6*x - 6)^2)])/ Sqrt[1 + x - x^2/3 - x^3/6]]; Rest[ CoefficientList[ Series[g[x], {x, 0, 30}], x]* Range[0, 30]!] (* Giovanni Resta, May 09 2016 *)

Formula

E.g.f.: log((1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16))).
Showing 1-4 of 4 results.