cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002851 Number of unlabeled trivalent (or cubic) connected simple graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 5, 19, 85, 509, 4060, 41301, 510489, 7319447, 117940535, 2094480864, 40497138011, 845480228069, 18941522184590, 453090162062723, 11523392072541432, 310467244165539782, 8832736318937756165
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x^2 + 2*x^3 + 5*x^4 + 19*x^5 + 85*x^6 + 509*x^7 + 4060*x^8 + 41302*x^9 + 510489*x^10 + 7319447*x^11 + ...
a(0) = 1 because the null graph (with no vertices) is vacuously 3-regular.
a(1) = 0 because there are no simple connected cubic graphs with 2 nodes.
a(2) = 1 because the tetrahedron is the only cubic graph with 4 nodes.
a(3) = 2 because there are two simple cubic graphs with 6 nodes: the bipartite graph K_{3,3} and the triangular prism graph.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 195.
  • R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
  • R. C. Read and G. F. Royle, Chromatic roots of families of graphs, pp. 1009-1029 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)

Crossrefs

Cf. A004109 (labeled connected cubic), A361407 (rooted connected cubic), A321305 (signed connected cubic), A000421 (connected cubic loopless multigraphs), A005967 (connected cubic multigraphs), A275744 (multisets).
Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
3-regular simple graphs: this sequence (connected), A165653 (disconnected), A005638 (not necessarily connected), A005964 (planar).
Connected regular graphs A005177 (any degree), A068934 (triangular array), specified degree k: this sequence (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: this sequence (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Extensions

More terms from Ronald C. Read

A002829 Number of trivalent (or cubic) labeled graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 70, 19355, 11180820, 11555272575, 19506631814670, 50262958713792825, 187747837889699887800, 976273961160363172131825, 6840300875426184026353242750, 62870315446244013091262178375075, 741227949070136911068308523257857500
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
  • R. W. Robinson, Computer print-out, no date. Gives first 30 terms.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A059441. Cf. A005814.
See A004109 for connected graphs of this type.

Programs

  • Maple
    From R. J. Mathar, Oct 31 2010: (Start)
    A002829aux := proc(i) local a,j,k ; a := 0 ; for j from 0 to i do for k from 0 to 2*(i-j) do a := a+(-1)^(j+k)/j!*doublefactorial(2*i+2*k-1)/3^k/k!/(2*i-2*j-k)! ; end do: end do: a*3^i/2^i ; end proc:
    A002829 := proc(n) (2*n)!/6^n*add( A002829aux(i)/(n-i)!,i=0..n) ; end proc: seq(A002829(n),n=0..6) ; (End)
    egf := hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2)) * exp(-ln(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1):
    ser := convert(series(egf,x=0,30),polynom):
    seq(coeff(ser,x,i) * (2*i)!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
  • Mathematica
    Flatten[{1,RecurrenceTable[{2 (-3+n) (-2+n) (-1+n) (-7+2 n) (-5+2 n) (-3+2 n) (-1+2 n) (-4+3 n) (-1+3 n) a[-4+n]-2 (-2+n) (-1+n) (-5+2 n) (-3+2 n) (-1+2 n) (-1+3 n) (43-42 n+9 n^2) a[-3+n]-(-1+n) (-3+2 n) (-1+2 n) (-104+501 n-441 n^2+108 n^3) a[-2+n]-9 (-1+n) (-1+2 n) (-7+3 n) (2-4 n+3 n^2) a[-1+n]+3 (-7+3 n) (-4+3 n) a[n]==0,a[1]==0,a[2]==1,a[3]==70,a[4]==19355},a,{n,1,15}]}] (* Vaclav Kotesovec, Mar 11 2014 *)
    terms = 14;
    egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[ 1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
    CoefficientList[egf, x] (2 Range[0, terms-1])! (* Jean-François Alcover, Nov 23 2018, after Mark van Hoeij *)
  • PARI
    a(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ Michel Marcus, Jan 18 2018

Formula

From Vladeta Jovovic, Mar 25 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(2 * n) * x^n/(2 * n)! satisfies differential equation 6 * x^2 * (-x^2 - 2 * x + 2) * (d^2/dx^2)f(x) - (x^5 + 6 * x^4 + 6 * x^3 - 32 * x + 8) * (d/dx)f(x) + (x/6) * (-x^2 - 2 * x + 2)^2 * f(x) = 0.
Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 24 * n + 48) * v(n - 1) + (72 * n^3 - 432 * n^2 + 788 * n - 428) * v(n - 2) + (36 * n^4 - 324 * n^3 + 1052 * n^2 - 1428 * n + 664) * v(n - 3) + (36 * n^4 - 360 * n^3 + 1260 * n^2 - 1800 * n + 864) * v(n - 4) + (6 * n^5 - 94 * n^4 + 550 * n^3 - 1490 * n^2 + 1844 * n - 816) * v(n - 5) + (-n^5 + 15 * n^4 - 85 * n^3 + 225 * n^2 - 274 * n + 120) * v(n - 6) = 0. (End)
a(n) = Sum_{i=0..2*n} Sum_{k=0..min(floor((3*n-i)/3), floor((2*n-i)/2))} Sum_{j=0..min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2))} ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2))*exp(-log(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1). Multiply x^i by (2*i)! to get the generating function. - Mark van Hoeij, Nov 07 2011
From Vaclav Kotesovec, Mar 11 2014: (Start)
D-finite with recurrence: 3*(3*n-7)*(3*n-4)*a(n) = 9*(n-1)*(2*n-1)*(3*n-7)*(3*n^2 - 4*n + 2)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(108*n^3 - 441*n^2 + 501*n - 104)*a(n-2) + 2*(n-2)*(n-1)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-1)*(9*n^2 - 42*n + 43)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-4)*(3*n-1)*a(n-4).
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n+2). (End)

Extensions

More terms from Vladeta Jovovic, Mar 25 2001

A324163 Triangle read by rows: T(n,k) is the number of connected k-regular simple graphs on n labeled vertices, (0 <= k < n).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 12, 0, 1, 0, 0, 60, 70, 15, 1, 0, 0, 360, 0, 465, 0, 1, 0, 0, 2520, 19320, 19355, 3507, 105, 1, 0, 0, 20160, 0, 1024380, 0, 30016, 0, 1, 0, 0, 181440, 11166120, 66462480, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 02 2019

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0,     1;
  0, 0,     3,     1;
  0, 0,    12,     0,       1;
  0, 0,    60,    70,      15,    1;
  0, 0,   360,     0,     465,    0,     1;
  0, 0,  2520, 19320,   19355, 3507,   105, 1;
  0, 0, 20160,     0, 1024380,    0, 30016, 0, 1;
  ...
		

Crossrefs

Column k=2 is A001710(n-1) for n >= 3.
Column k=3 is aerated A004109.
Column k=4 is A272905.
Row sums are A322659.
Cf. A059441 (not necessarily connected), A068934 (unlabeled).

Formula

Column k is the logarithmic transform of column k of A059441.

A006714 Number of trivalent bipartite labeled graphs with 2n labeled nodes.

Original entry on oeis.org

10, 840, 257040, 137260200, 118273755600, 154712104747200, 292311804557572800, 766931112143320924800, 2706462791802644002128000, 12512595130808078973370704000, 74130965352250071944327288640000, 552334353713465817349513210512960000, 5092566798555894395129552704613028960000
Offset: 3

Views

Author

Keywords

Comments

R. C. Read incorrectly has a(7) = 118257539400 and a(8) = 154678050727200 which he calculated by hand. - Sean A. Irvine, Jun 27 2017

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* b stands for A001501 *) b[n_] := n!^2 Sum[2^(2k-n) 3^(k-n) (3(n-k))!  HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k)!^2), {k, 0, n}]/6^n;
    (* c stands for A246599 *) c[n_] := c[n] = Binomial[2n-1, n] b[n] - Sum[ Binomial[2n-1, 2k] Binomial[2k, k] b[k] c[n-k], {k, 1, n-1}];
    a[n_] := a[n] = c[n] + Sum[Binomial[2n-1, 2k-1] c[k] a[n-k], {k, 1, n-1}];
    Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A001501
    b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
    seq(n)={my(v=vector(n,n,b(n)*binomial(2*n-1,n)), u=vector(n), s=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, 2*binomial(2*n-1,2*k)*v[k]*u[n-k]); s[n]=u[n] + sum(k=3, n-3, binomial(2*n-1,2*k-1)*u[k]*s[n-k])); s[3..n]} \\ Andrew Howroyd, May 22 2018

Formula

a(n) = A246599(n) + Sum_{k=1..n-1} binomial(2*n-1,2*k-1)*A246599(k)*a(n-k). - Andrew Howroyd, May 22 2018
a(n) ~ 3^(n + 1/2) * n^(3*n) / (sqrt(2) * exp(3*n+2)). - Vaclav Kotesovec, Feb 17 2024

Extensions

a(7)-a(8) corrected and a(9)-a(12) computed with nauty by Sean A. Irvine, Jun 27 2017
Terms a(13) and beyond from Andrew Howroyd, May 22 2018

A007099 Number of labeled trivalent (or cubic) 2-connected graphs with 2n nodes.

Original entry on oeis.org

0, 1, 70, 19320, 11052720, 11408720400, 19285018552800, 49792044478176000, 186348919238786304000, 970566620767088881536000, 6808941648018137282054400000, 62642603299257346706851910400000
Offset: 1

Views

Author

Keywords

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • R. W. Robinson, Computer print-out, no date. Gives first 29 terms.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    s := proc(n)
        option remember;
        if n = 1 then
            0;
        elif n = 2 then
            1;
        else
            3*n*procname(n-1)+2*procname(n-2)+(3*n-1)*add(procname(i)*procname(n-1-i),i=2..n-3) ;
        end if;
    end proc:
    A007099 := proc(n)
        if n = 1 then
            0;
        elif n = 2 then
            1;
        else
            (2*n)!/3/n/2^n*(s(n)-2*s(n-1)) ;
        end if;
    end proc: # R. J. Mathar, Nov 08 2018
  • Mathematica
    s[n_] := s[n] = If[n <= 2, n - 1, 3 n s[n - 1] + 2 s[n - 2] + (3 n - 1) Sum[s[i] s[n - 1 - i], {i, 2, n - 3}]]; Array[Floor[(2 #)!*(s[#] - 2 s[# - 1])/(3 # 2^#)] &, 12] (* Michael De Vlieger, Oct 11 2017 *)

Formula

a(n) = (2*n)! * (s(n) - 2*s(n-1)) / (3*n*2^n) where s(1)=0, s(2)=1, and s(n) = 3*n*s(n-1) + 2*s(n-2) + (3*n-1) * Sum_{i=2..n-3} s(i) * s(n-1-i). - Sean A. Irvine, Oct 11 2017

A246599 Number of connected trivalent bipartite labeled graphs with 2n labeled nodes.

Original entry on oeis.org

10, 840, 257040, 137214000, 118248530400, 154686980448000, 292276881344448000, 766864651478365440000, 2706292794907249067520000, 12512021073989410699165440000, 74128448237031250090060032000000, 552320243355746711191770103680000000, 5092467146398443040845772685937408000000
Offset: 3

Views

Author

N. J. A. Sloane, Sep 08 2014

Keywords

Comments

R. C. Read incorrectly has a(7) = 118237555800 and a(8) = 154652926428000 which he calculated by hand.

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.

Crossrefs

Programs

  • Mathematica
    b[n_] := n!^2*Sum[2^(2k-n) 3^(k-n)(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
    a[n_] := a[n] = Binomial[2n-1, n] b[n] - Sum[Binomial[2n-1, 2k] Binomial[2 k, k] b[k] a[n-k], {k, 1, n-1}];
    Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A001501
    b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
    seq(n)={my(v=vector(n, n, b(n)*binomial(2*n, n)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, binomial(2*n-1,2*k)*v[k]*u[n-k])); u[3..n]/2} \\ Andrew Howroyd, May 22 2018

Formula

a(n) = binomial(2*n-1, n)*A001501(n) - Sum_{k=1..n-1} binomial(2*n-1, 2*k) * binomial(2*k, k) * A001501(k) * a(n-k). - Andrew Howroyd, May 22 2018
a(n) ~ 3^(n + 1/2) * n^(3*n) / (sqrt(2) * exp(3*n + 2)). - Vaclav Kotesovec, Feb 17 2024

Extensions

a(7)-a(8) corrected and a(9)-a(12) computed with nauty by Sean A. Irvine, Jun 27 2017
Terms a(13) and beyond from Andrew Howroyd, May 22 2018

A007102 Number of labeled disconnected trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 0, 0, 35, 14700, 11832975, 15245900670, 29683109280825, 84114515340655800, 335974271076054435825, 1839316574841276904122750, 13461678841737111645720135075, 128798406388658994689642297857500
Offset: 0

Views

Author

Keywords

References

  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

a(n) = A002829(n) - A004109(n), for n>0. - Sean A. Irvine, Oct 12 2017
Showing 1-7 of 7 results.