cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A006820 Number of connected regular simple graphs of degree 4 (or quartic graphs) with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 6, 16, 59, 265, 1544, 10778, 88168, 805491, 8037418, 86221634, 985870522, 11946487647, 152808063181, 2056692014474, 29051272833609, 429668180677439, 6640165204855036, 107026584471569605, 1796101588825595008, 31333997930603283531, 567437240683788292989
Offset: 0

Views

Author

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 4-regular. - Jason Kimberley, Jan 29 2011
The Multiset Transform of this sequence gives a triangle which gives in row n and column k the 4-regular simple graphs with n>=1 nodes and k>=1 components (row sums A033301), starting:
;
;
;
;
1 ;
1 ;
2 ;
6 ;
16 ;
59 1 ;
265 1 ;
1544 3 ;
10778 8 ;
88168 25 ;
805491 87 1 ;
8037418 377 1 ;
86221634 2023 3 ;
985870522 13342 9 ;
11946487647 104568 27 ;
152808063181 930489 96 1 ; - R. J. Mathar, Jun 02 2022

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Jason Kimberley, Mar 27 2010 and Jan 29 2011: (Start)
4-regular simple graphs: this sequence (connected), A033483 (disconnected), A033301 (not necessarily connected).
Connected regular simple graphs: A005177 (any degree), A068934 (triangular array); specified degree k: A002851 (k=3), this sequence (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 4-regular simple graphs with girth at least g: this sequence (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184943 (g=3), A184944 (g=4), A184945 (g=5).
Connected 4-regular graphs: this sequence (simple), A085549 (multigraphs with loops allowed), A129417 (multigraphs with loops verboten). (End)

Formula

a(n) = A184943(n) + A033886(n).
a(n) = A033301(n) - A033483(n).
Inverse Euler transform of A033301.
Row sums of A184940. - R. J. Mathar, May 30 2022

Extensions

a(19)-a(22) were appended by Jason Kimberley on Sep 04 2009, Nov 24 2009, Mar 27 2010, and Mar 18 2011, from running M. Meringer's GENREG for 3.4, 44, and 403 processor days, and 15.5 processor years, at U. Ncle.
a(22) corrected and a(23)-a(28) from Andrew Howroyd, Mar 10 2020

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012

A068934 Triangular array C(n, r) = number of connected r-regular graphs with n nodes, 0 <= r < n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 5, 6, 3, 1, 1, 0, 0, 1, 0, 16, 0, 4, 0, 1, 0, 0, 1, 19, 59, 60, 21, 5, 1, 1, 0, 0, 1, 0, 265, 0, 266, 0, 6, 0, 1, 0, 0, 1, 85, 1544, 7848, 7849, 1547, 94, 9, 1, 1, 0, 0, 1, 0, 10778, 0, 367860, 0
Offset: 1

Views

Author

David Wasserman, Mar 08 2002

Keywords

Comments

A graph is called r-regular if every node has exactly r edges. The numbers in this table were copied from the column sequences.
This sequence can be derived from A051031 by inverse Euler transform. See the comments in A051031 for a brief description of how that sequence can be computed without generating all regular graphs. - Andrew Howroyd, Mar 13 2020

Examples

			01: 1;
02: 0, 1;
03: 0, 0, 1;
04: 0, 0, 1, 1;
05: 0, 0, 1, 0, 1;
06: 0, 0, 1, 2, 1, 1;
07: 0, 0, 1, 0, 2, 0, 1;
08: 0, 0, 1, 5, 6, 3, 1, 1;
09: 0, 0, 1, 0, 16, 0, 4, 0, 1;
10: 0, 0, 1, 19, 59, 60, 21, 5, 1, 1;
11: 0, 0, 1, 0, 265, 0, 266, 0, 6, 0, 1;
12: 0, 0, 1, 85, 1544, 7848, 7849, 1547, 94, 9, 1, 1;
13: 0, 0, 1, 0, 10778, 0, 367860, 0, 10786, 0, 10, 0, 1;
14: 0, 0, 1, 509, 88168, 3459383, 21609300, 21609301, 3459386, 88193, 540, 13, 1, 1;
15: 0, 0, 1, 0, 805491, 0, 1470293675, 0, 1470293676, 0, 805579, 0, 17, 0, 1;
16: 0, 0, 1, 4060, 8037418, 2585136675, 113314233808, 733351105934, 733351105935, 113314233813, 2585136741, 8037796, 4207, 21, 1, 1;
		

Crossrefs

Connected regular simple graphs: A005177 (any degree -- sum of rows), this sequence (triangular array), specified degree r (columns): A002851 (r=3), A006820 (r=4), A006821 (r=5), A006822 (r=6), A014377 (r=7), A014378 (r=8), A014381 (r=9), A014382 (r=10), A014384 (r=11).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *at least* g: this sequence (g=3), A186714 (g=4), A186715 (g=5), A186716 (g=6), A186717 (g=7), A186718 (g=8), A186719 (g=9).
Triangular arrays C(n,k) counting connected simple k-regular graphs on n vertices with girth *exactly* g: A186733 (g=3), A186734 (g=4).

Formula

C(n, r) = A051031(n, r) - A068933(n, r).
Column k is the inverse Euler transform of column k of A051031. - Andrew Howroyd, Mar 10 2020

Extensions

Edited by Jason Kimberley, Sep 23 2009, Nov 2011, Jan 2012, and Mar 2012

A005177 Number of connected regular graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 4, 17, 22, 167, 539, 18979, 389436, 50314796, 2942198440, 1698517036411, 442786966115560, 649978211591600286, 429712868499646474880, 2886054228478618211088773, 8835589045148342277771518309, 152929279364927228928021274993215, 1207932509391069805495173301992815105, 99162609848561525198669168640159162918815
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Regular simple graphs of any degree: this sequence (connected), A068932 (disconnected), A005176 (not necessarily connected), A275420 (multisets).
Connected regular graphs of any degree with girth at least g: this sequence (g=3), A186724 (g=4), A186725 (g=5), A186726 (g=6), A186727 (g=7), A186728 (g=8), A186729 (g=9).
Connected regular simple graphs: this sequence (any degree), A068934 (triangular array); specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11). - Jason Kimberley, Nov 03 2011

Formula

a(n) = sum of the n-th row of A068934.
a(n) = A165647(n) - A165648(n).
This sequence is the inverse Euler transformation of A165647.

Extensions

More terms from David Wasserman, Mar 08 2002
a(15) from Giovanni Resta, Feb 05 2009
Terms are sums of the output from M. Meringer's genreg software. To complete a(16) it was run by Jason Kimberley, Sep 23 2009
a(0)=1 (due to the empty graph being vacuously connected and regular) inserted by Jason Kimberley, Apr 11 2012
a(17)-a(21) from Andrew Howroyd, Mar 10 2020
a(22)-a(24) from Andrew Howroyd, May 19 2020

A014371 Number of trivalent connected simple graphs with 2*n nodes and girth at least 4.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 22, 110, 792, 7805, 97546, 1435720, 23780814, 432757568, 8542471494, 181492137812, 4127077143862
Offset: 0

Views

Author

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 3-regular; since it is acyclic, it has infinite girth. - Jason Kimberley, Jan 29 2011

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.

Crossrefs

From Jason Kimberley, Jun 28 2010 and Jan 29 2011: (Start)
3-regular simple graphs with girth at least 4: this sequence (connected), A185234 (disconnected), A185334 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), this sequence (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), A181170 (k=9).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), this sequence (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A002851 = A@002851;
    A006923 = A@006923;
    a[n_] := A002851[[n + 1]] - A006923[[n + 1]];
    a /@ Range[0, 16] (* Jean-François Alcover, Jan 27 2020 *)

Extensions

Terms a(14) and a(15) appended, from running Meringer's GENREG for 4.2 and 93.2 processor days at U. Newcastle, by Jason Kimberley on Jun 28 2010
a(16), from House of Graphs, by Jan Goedgebeur et al., added by Jason Kimberley, Feb 15 2011

A006821 Number of connected regular graphs of degree 5 (or quintic graphs) with 2n nodes.

Original entry on oeis.org

1, 0, 0, 1, 3, 60, 7848, 3459383, 2585136675, 2807105250897, 4221456117363365, 8516994770090547979, 22470883218081146186209, 75883288444204588922998674, 322040154704144697047052726990
Offset: 0

Views

Author

Keywords

Examples

			a(0)=1 because the null graph (with no vertices) is vacuously 5-regular and connected.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
5-regular simple graphs: this sequence (connected), A165655 (disconnected), A165626 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), this sequence (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 5-regular simple graphs with girth at least g: this sequence (g=3), A058275 (g=4), A205295 (g=5).
Connected 5-regular simple graphs with girth exactly g: A184953 (g=3), A184954 (g=4), A184955 (g=5).
Connected 5-regular graphs: A129430 (loops and multiple edges allowed), A129419 (no loops but multiple edges allowed), this sequence (no loops nor multiple edges). (End)

Formula

a(n) = A184953(n) + A058275(n).
a(n) = A165626(n) - A165655(n).
Inverse Euler transform of A165626.

Extensions

By running M. Meringer's GENREG for about 2 processor years at U. Newcastle, a(9) was found by Jason Kimberley, Nov 24 2009
a(10)-a(14) from Andrew Howroyd, Mar 10 2020

A014372 Number of trivalent connected simple graphs with 2n nodes and girth at least 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 9, 49, 455, 5783, 90938, 1620479, 31478584, 656783890, 14621871204, 345975648562
Offset: 0

Views

Author

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 3-regular; since it is acyclic, it has infinite girth. - Jason Kimberley, Jan 29 2011
Brendan McKay has observed that a(13) = 31478584 is output by genreg, minibaum, and snarkhunter, but Meringer's table currently has a(13) = 31478582. - Jason Kimberley, May 17 2017

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.

Crossrefs

Contribution from Jason Kimberley, 2010, 2011, and 2012: (Start)
3-regular simple graphs with girth at least 5: this sequence (connected), A185235 (disconnected), A185335 (not necessarily connected).
Connected k-regular simple graphs with girth at least 5: A186725 (all k), A186715 (triangle); A185115 (k=2), this sequence (k=3), A058343 (k=4), A205295 (g=5).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); A002851 (g=3), A014371 (g=4), this sequence (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Extensions

Terms a(15) and a(16) appended, from running Meringer's GENREG for 28.7 and 715.2 processor days at U. Ncle., by Jason Kimberley, Jun 28 2010.

A014378 Number of connected regular graphs of degree 8 with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105935, 423187422492342, 281341168330848873, 214755319657939505395, 187549729101764460261498, 186685399408147545744203815, 210977245260028917322933154987
Offset: 0

Views

Author

Keywords

Comments

Since the nontrivial 8-regular graph with the least number of vertices is K_9, there are no disconnected 8-regular graphs with less than 18 vertices. Thus for n<18 this sequence is identical to A180260. - Jason Kimberley, Sep 25 2009 and Feb 10 2011

Examples

			a(0)=1 because the null graph (with no vertices) is vacuously 8-regular and connected.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.

Crossrefs

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
8-regular simple graphs: this sequence (connected), A165878 (disconnected), A180260 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), this sequence (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 8-regular simple graphs with girth at least g: A184981 (triangle); chosen g: A014378 (g=3), A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g: A184980 (triangle); chosen g: A184983 (g=3). (End)

Formula

a(n) = A184983(n) + A181154(n).
a(n) = A180260(n) + A165878(n).
This sequence is the inverse Euler transformation of A180260.

Extensions

Using the symmetry of A051031, a(15) and a(16) were appended by Jason Kimberley, Sep 25 2009
a(17)-a(22) from Andrew Howroyd, Mar 13 2020

A006822 Number of connected regular graphs of degree 6 (or sextic graphs) with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7849, 367860, 21609300, 1470293675, 113314233808, 9799685588936, 945095823831036, 101114579937187980, 11945375659139626688, 1551593789610509806552, 220716215902792573134799, 34259321384370620122314325, 5782740798229825207562109439
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
6-regular simple graphs: this sequence (connected), A165656 (disconnected), A165627 (not necessarily connected).
Connected regular graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), this sequence (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 6-regular simple graphs with girth at least g: this sequence (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: A184963 (g=3), A184964 (g=4). (End)

Formula

a(n) = A184963(n) + A058276(n).
a(n) = A165627(n) - A165656(n).
This sequence is the inverse Euler transformation of A165627.

Extensions

a(16) and a(17) appended, from running M. Meringer's GENREG at U. Newcastle for 41 processor days and 3.5 processor years, by Jason Kimberley, Sep 04 2009 and Nov 13 2009.
Terms a(18)-a(24), due to the extension of A165627 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020

A014374 Number of trivalent connected simple graphs with 2n nodes and girth at least 6.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7574, 181227, 4624501, 122090544, 3328929954, 93990692595, 2754222605376
Offset: 0

Views

Author

Keywords

Comments

The null graph on 0 vertices is vacuously connected and 3-regular; since it is acyclic, it has infinite girth. [Jason Kimberley, Jan 29 2011]

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.
  • M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146. [Jason Kimberley, Jan 29 2011]

Crossrefs

From Jason Kimberley, May 18 2010 and Jan 29 2011: (Start)
Connected k-regular simple graphs with girth at least 6: A186726 (any k), A186716 (triangle); specified degree k: A185116 (k=2), this sequence (k=3), A058348 (k=4).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), this sequence (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Extensions

Terms a(16) and a(17) appended, from running Meringer's GENREG for 18.6 and 530 processor days at U. Ncle., by Jason Kimberley on May 18 2010
Term a(18) from House of Graphs via Jason Kimberley, May 21 2017
Showing 1-10 of 61 results. Next