A246599 Number of connected trivalent bipartite labeled graphs with 2n labeled nodes.
10, 840, 257040, 137214000, 118248530400, 154686980448000, 292276881344448000, 766864651478365440000, 2706292794907249067520000, 12512021073989410699165440000, 74128448237031250090060032000000, 552320243355746711191770103680000000, 5092467146398443040845772685937408000000
Offset: 3
Keywords
References
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..50
- R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
Programs
-
Mathematica
b[n_] := n!^2*Sum[2^(2k-n) 3^(k-n)(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n; a[n_] := a[n] = Binomial[2n-1, n] b[n] - Sum[Binomial[2n-1, 2k] Binomial[2 k, k] b[k] a[n-k], {k, 1, n-1}]; Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
-
PARI
\\ here b(n) is A001501 b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))} seq(n)={my(v=vector(n, n, b(n)*binomial(2*n, n)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, binomial(2*n-1,2*k)*v[k]*u[n-k])); u[3..n]/2} \\ Andrew Howroyd, May 22 2018
Formula
a(n) = binomial(2*n-1, n)*A001501(n) - Sum_{k=1..n-1} binomial(2*n-1, 2*k) * binomial(2*k, k) * A001501(k) * a(n-k). - Andrew Howroyd, May 22 2018
a(n) ~ 3^(n + 1/2) * n^(3*n) / (sqrt(2) * exp(3*n + 2)). - Vaclav Kotesovec, Feb 17 2024
Extensions
a(7)-a(8) corrected and a(9)-a(12) computed with nauty by Sean A. Irvine, Jun 27 2017
Terms a(13) and beyond from Andrew Howroyd, May 22 2018
Comments