cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A059441 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			1;
1,   1;
1,   0,       1;
1,   3,       3,        1;
1,   0,      12,        0,          1;
1,  15,      70,       70,         15,    1;
1,   0,     465,        0,        465,    0,   1;
1, 105,    3507,    19355,      19355, 3507, 105, 1;
1,   0,   30016,        0,    1024380, ...;
1, 945,  286884, 11180820,   66462606, ...;
1,   0, 3026655,        0, 5188453830, ...;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.

Crossrefs

Row sums are A295193.
Columns: A123023 (k=1), A001205 (k=2), A002829 (k=3, with alternating zeros), A005815 (k=4), A338978 (k=5, with alternating zeros), A339847 (k=6).
Cf. A051031 (unlabeled case), A324163 (connected case), A333351 (multigraphs).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
  • PARI
    for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(37)-a(55) from Andrew Howroyd, Aug 25 2017

A319190 Number of regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 3, 19, 879, 5280907, 1069418570520767
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 19 regular hypergraphs:
                 {{1,2,3}}
                {{1},{2,3}}
                {{2},{1,3}}
                {{3},{1,2}}
               {{1},{2},{3}}
            {{1},{2,3},{1,2,3}}
            {{2},{1,3},{1,2,3}}
            {{3},{1,2},{1,2,3}}
            {{1,2},{1,3},{2,3}}
           {{1},{2},{3},{1,2,3}}
           {{1},{2},{1,3},{2,3}}
           {{1},{3},{1,2},{2,3}}
           {{2},{3},{1,2},{1,3}}
        {{1,2},{1,3},{2,3},{1,2,3}}
       {{1},{2},{1,3},{2,3},{1,2,3}}
       {{1},{3},{1,2},{2,3},{1,2,3}}
       {{2},{3},{1,2},{1,3},{1,2,3}}
      {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{1,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,2^n}],{n,5}]

Extensions

a(6) from Andrew Howroyd, Mar 12 2020

A319189 Number of uniform regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 2, 3, 10, 29, 3780, 5012107
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is uniform if all edges have the same size, and regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.
Also the number of 0-1 matrices with n columns, all distinct rows, no zero columns, equal row-sums, and equal column-sums, up to a permutation of the rows.

Examples

			The a(4) = 10 edge-sets:
               {{1,2,3,4}}
              {{1,2},{3,4}}
              {{1,3},{2,4}}
              {{1,4},{2,3}}
            {{1},{2},{3},{4}}
        {{1,2},{1,3},{2,4},{3,4}}
        {{1,2},{1,4},{2,3},{3,4}}
        {{1,3},{1,4},{2,3},{2,4}}
    {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
Inequivalent representatives of the a(4) = 10 matrices:
  [1 1 1 1]
.
  [1 1 0 0] [1 0 1 0] [1 0 0 1]
  [0 0 1 1] [0 1 0 1] [0 1 1 0]
.
  [1 0 0 0] [1 1 0 0] [1 1 0 0] [1 0 1 0] [1 1 1 0]
  [0 1 0 0] [1 0 1 0] [1 0 0 1] [1 0 0 1] [1 1 0 1]
  [0 0 1 0] [0 1 0 1] [0 1 1 0] [0 1 1 0] [1 0 1 1]
  [0 0 0 1] [0 0 1 1] [0 0 1 1] [0 1 0 1] [0 1 1 1]
.
  [1 1 0 0]
  [1 0 1 0]
  [1 0 0 1]
  [0 1 1 0]
  [0 1 0 1]
  [0 0 1 1]
		

Crossrefs

Uniform hypergraphs are counted by A306021. Unlabeled uniform regular multiset partitions are counted by A319056. Regular graphs are A295193. Uniform clutters are A299353.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{m}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{m,0,n},{k,1,Binomial[n,m]}],{n,5}]

Extensions

a(7) from Jinyuan Wang, Jun 20 2020

A025036 Number of partitions of { 1, 2, ..., 4n } into sets of size 4.

Original entry on oeis.org

1, 1, 35, 5775, 2627625, 2546168625, 4509264634875, 13189599057009375, 59287247761257140625, 388035036597427985390625, 3546252199463894358484921875, 43764298393583920278062420859375, 709638098451963267308782154234765625, 14778213400262135041705388361938994140625
Offset: 0

Views

Author

Keywords

Comments

P-recursive. - Marni Mishna, Jul 11 2005

Examples

			a(1)=1: {1,2,3,4}.
One of the a(2)=35 partitions for n = 8: {1,2,3,4}{5,6,7,8}.
		

Crossrefs

Column k=4 of A060540.

Programs

  • Maple
    a := pochhammer(n + 1, 3*n) / 24^n:
    seq(a(n), n=0..13); # Peter Luschny, Nov 18 2019
  • Mathematica
    terms = 12; max = 4*(terms-1); DeleteCases[CoefficientList[Exp[x^4/4!] + O[x]^(max+1), x]*Range[0, max]!, 0] (* Jean-François Alcover, Jun 29 2018, after Paul Barry *)

Formula

a(n) = (4n)!/(n!(4!)^n). - Christian G. Bower, Sep 15 1998
E.g.f.: A(t) = Sum a(n)*t^(4n)/(4n!) = exp(t^4/4!); recurrence: 3*a(n) - (4*n-3)*(2*n-1)*(4*n-1)*a(n-1) = 0. - Marni Mishna, Jul 11 2005
Integral representation as n-th moment of a positive function on the positive axis in Maple notation: a(n)=int(x^n*(1/4*(2^(3/4)*hypergeom([], [5/4, 3/2], -3/32*x)*3^(3/4)*GAMMA(3/4)^2*x*Pi^(1/2)-2*hypergeom([], [3/4, 5/4], -3/32*x)*3^(1/2)*2^(1/2)*Pi*x^(3/4)*GAMMA(3/4)+hypergeom([], [1/2, 3/4], -3/32*x)*3^(1/4)*2^(3/4)*Pi^(3/2)*x^(1/2))/Pi^(3/2)/x^(5/4)/GAMMA(3/4)), x=0..infinity), n=0, 1..., with offset 1. -Karol A. Penson, Oct 06 2005
E.g.f.: exp(x^4/4!) (with interpolated zeros). - Paul Barry, May 26 2003
a(n) = Pochhammer(n+1, 3*n)/24^n. - Peter Luschny, Nov 18 2019
a(n) ~ 2^(5*n+1) * (n/e)^(3*n) / 3^n. - Amiram Eldar, Aug 28 2025

Extensions

Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar

A319612 Number of regular simple graphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 1, 7, 13, 171, 931, 45935, 1084413, 155862511, 10382960971, 6939278572095, 2203360500122299, 4186526756621772343, 3747344008241368443819, 35041787059691023579970847, 156277111373303386104606663421, 4142122641757598618318165240180095
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. The span of a graph is the union of its edges.

Examples

			The a(4) = 7 edge-sets:
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{3,4}}
  {{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Formula

a(n) = A295193(n) - 1.

Extensions

a(16)-a(18) from Andrew Howroyd, Sep 02 2019

A005815 Number of 4-valent labeled graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462606, 5188453830, 480413921130, 52113376310985, 6551246596501035, 945313907253606891, 155243722248524067795, 28797220460586826422720
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005814, A002829, A005816, A272905 (connected). A diagonal of A059441.

Programs

  • Maple
    egf := (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16));
    ser := convert(series(egf,x=0,40),polynom):
    seq(coeff(ser,x,i)*i!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
  • Mathematica
    max = 17; f[x_] := HypergeometricPFQ[{1/4, 3/4}, {}, -12*x*(x + 2)*(x - 1)/(x^3 + 2*x^2 - 6*x - 6)^2]*Exp[-x*(x^2 - 6)/(8*x + 16)]/(1 + x - x^2/3 - x^3/6)^ (1/2); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Jun 19 2012, from e.g.f. *)

Formula

From Vladeta Jovovic, Mar 26 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(n)*x^n/(n)! satisfies the differential equation 16*x^2*(x - 1)^2*(x + 2)^2*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)*(d^2/dx^2)y(x) - 4*(x^13 + 4*x^12 - 16*x^10 - 10*x^9 - 36*x^8 - 220*x^7 - 348*x^6 - 48*x^5 + 200*x^4 - 336*x^3 - 240*x^2 + 416*x - 96)*(d/dx)y(x) - x^4*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)^2*y(x) = 0.
Recurrence: a(n) = - 1/384*(( - 256*n^2 - 896*n + 1152)*a(n - 1) + (768*n^3 - 3648*n^2 + 5568*n - 2688)*a(n - 2) + ( - 192*n^4 + 3264*n^3 - 14784*n^2 + 24384*n - 12672)*a(n - 3) + (224*n^6 - 4512*n^5 + 36304*n^4 - 148160*n^3 + 320016*n^2 - 341728*n + 137856)*a(n - 5) + ( - 640*n^5 + 8800*n^4 - 46400*n^3 + 116000*n^2 - 135360*n + 57600)*a(n - 4) + ( - 24*n^10 + 1320*n^9 - 31680*n^8 + 435600*n^7 - 3786552*n^6 + 21649320*n^5 - 82006320*n^4 + 201828000*n^3 - 306085824*n^2 + 255087360*n - 87091200)*a(n - 11) + (64*n^10 - 3480*n^9 + 82692*n^8 - 1127232*n^7 + 9726024*n^6 - 55255032*n^5 + 208179908*n^4 - 510068208*n^3 + 770738352*n^2 - 640484928*n + 218211840)*a(n - 9) + (16*n^11 - 992*n^10 + 27256*n^9 - 437160*n^8 + 4536288*n^7 - 31876656*n^6 + 154182488*n^5 - 510784360*n^4 + 1128552896*n^3 - 1570313952*n^2 + 1223830656*n - 397716480)*a(n - 10) + ( - 128*n^8 + 5488*n^7 - 94576*n^6 + 864976*n^5 - 4606672*n^4 + 14604352*n^3 - 26753984*n^2 + 25611264*n - 9630720)*a(n - 7) + (16*n^9 - 576*n^8 + 8704*n^7 - 71680*n^6 + 348880*n^5 - 1013824*n^4 + 1673376*n^3 - 1333120*n^2 + 226944*n + 161280)*a(n - 8) + (128*n^7 - 2192*n^6 + 12048*n^5 - 8240*n^4 - 151248*n^3 + 565312*n^2 - 765248*n + 349440)*a(n - 6) + ( - 4*n^13 + 364*n^12 - 14924*n^11 + 364364*n^10 - 5897892*n^9 + 66678612*n^8 - 540145892*n^7 + 3163772612*n^6 - 13344475144*n^5 + 39830815024*n^4 - 81255012384*n^3 + 106386868224*n^2 - 79211036160*n + 24908083200)*a(n - 14) + ( - 4*n^13 + 360*n^12 - 14612*n^11 + 353496*n^10 - 5674812*n^9 + 63680760*n^8 - 512439356*n^7 + 2983811688*n^6 - 12520194544*n^5 + 37201987680*n^4 - 75598952832*n^3 + 98660630016*n^2 - 73265264640*n + 22992076800)*a(n - 13) + ( - 16*n^12 + 1244*n^11 - 43208*n^10 + 884620*n^9 - 11860728*n^8 + 109396452*n^7 - 709293464*n^6 + 3243764260*n^5 - 10331326456*n^4 + 22203205904*n^3 - 30301280928*n^2 + 23300910720*n - 7504358400)*a(n - 12) + ( - n^14 + 105*n^13 - 5005*n^12 + 143325*n^11 - 2749747*n^10 + 37312275*n^9 - 368411615*n^8 + 2681453775*n^7 - 14409322928*n^6 + 56663366760*n^5 - 159721605680*n^4 + 310989260400*n^3 - 392156797824*n^2 + 283465647360*n - 87178291200)*a(n - 15)). (End)
a(n) = Sum_{d=0..floor(n/2), c=0..floor(n/2-d), b=0..(n-2c-2d), f=0..(n-2c-2d-b), k=0..min(n-b-2c-2d-f, 2n-2f-2b-3c-4d), j=0..floor(k/2+f)} ((-1)^(k+2f-j+d)*n!*(k+2f)!(2(2n-k-2f-2b-3c-4d))!) / (2^(5n-2k-2f-3b-8c-7d) * 3^(n-b-c-2d-k-f)*(2n-k-2f-2b-3c-4d)!*(k+2f-2j)!*j!*b!*c!*d!*k!*f!*(n-b-2c-2d-k-f)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16)). - Mark van Hoeij, Nov 07 2011
a(n) ~ n^(2*n) * 2^(n+1/2) / (3^n * exp(2*n+15/4)). - Vaclav Kotesovec, Mar 11 2014

Extensions

More terms from Vladeta Jovovic, Mar 26 2001

A004109 Number of connected trivalent (or cubic) labeled graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 70, 19320, 11166120, 11543439600, 19491385914000, 50233275604512000, 187663723374359232000, 975937986889287117696000, 6838461558851342749449120000, 62856853767402275979616458240000, 741099150663748252073618880960000000, 10997077750618335243742188527076864000000
Offset: 0

Views

Author

Keywords

Examples

			From _R. J. Mathar_, Oct 18 2018: (Start)
For n=3, 2*n=6, the A002851(n)=2 graphs have multiplicities of 10 and 60 (sum 70).
For n=4, 2*n=8, the A002851(n)=5 graphs have multiplicities of 3360, 840, 2520, 10080 and 2520, (sum 19320). (The orders of the five Aut-groups are 8!/3360 =12, 8!/840=48, 8!/2520 =16, 8!/10080=4 and 8!/2520=16, i.e., all larger than 1 as indicated in A204328). (End)
		

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • R. W. Robinson, Computer print-out, no date. Gives first 29 terms.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A002829 for not-necessarily-connected graphs, A002851 for connected unlabeled cases.
Cf. A324163.

Formula

Conjecture: a(n) ~ 2^(n + 1/2) * 3^n * n^(3*n) / exp(3*n+2). - Vaclav Kotesovec, Feb 17 2024

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 02 2019

A005814 Number of 3-regular (trivalent) labeled graphs on 2n vertices with multiple edges and loops allowed.

Original entry on oeis.org

1, 2, 47, 4720, 1256395, 699971370, 706862729265, 1173744972139740, 2987338986043236825, 11052457379522093985450, 57035105822280129537568575, 397137564714721907350936061400
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of representations required for the symbolic central moments of order 3 for the multivariate normal distribution, that is, E[X1^3 X2^3 .. Xn^3|mu=0, Sigma], where n is even. These representations are the upper-triangular, positive integer matrices for which for each i, the sum of the i-th row and i-th column equals 3, the power of each component. See Phillips links below. - Kem Phillips, Aug 18 2014

Examples

			a(1)=2: {(1,1), (1,2), (2,2)}, {(1,2), (1,2), (1,2)}.
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 175, (7.5.12).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Even bisection of column k=3 of A333467.

Programs

  • Mathematica
    max = 11; f[x_] := Sum[a[2n]*(x^n/(2n)!), {n, 0, max}]; a[0] = 1; coes = CoefficientList[ 6x^2*(x^2 - 2x - 2)* f''[x] - (x^5 - 6x^4 + 6x^3 + 24x^2 + 16x - 8)*f'[x] + 1/6*(x^5 - 10x^4 + 24x^3 - 4x^2 - 44x - 48)*f[x], x]; Table[a[2 n], {n, 0, max}] /. Solve[Thread[coes[[1 ;; max]] == 0]][[1]](* Jean-François Alcover, Nov 29 2011 *)

Formula

From Vladeta Jovovic, Mar 25 2001: (Start)
E.g.f. f(x) = Sum_{n>=0} a(2 * n) * x^n/(2 * n)! satisfies the differential equation 6 * x^2 * (x^2 - 2 * x - 2) * (d^2/dx^2)f(x) - (x^5 - 6 * x^4 + 6 * x^3 + 24 * x^2 + 16 * x - 8) * (d/dx)f(x) + (1/6) * (x^5 - 10 * x^4 + 24 * x^3 - 4 * x^2 - 44 * x - 48) * f(x) = 0.
Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 120 * n - 96) * v(n - 1) + (-72 * n^3 + 288 * n^2 - 404 * n + 188) * v(n - 2) + (36 * n^4 - 396 * n^3 + 1472 * n^2 - 2184 * n + 1072) * v(n - 3) + (36 * n^4 - 336 * n^3 + 1116 * n^2 - 1536 * n + 720) * v(n - 4) + (-6 * n^5 + 80 * n^4 - 410 * n^3 + 1000 * n^2 - 1144 * n + 480) * v(n - 5) + (n^5 - 15 * n^4 + 85 * n^3 - 225 * n^2 + 274 * n - 120) * v(n - 6) = 0.
(End)
Linear recurrence satisfied by a(n): {a(0) = 1, a(1) = 2, a(2) = 47, a(3) = 4720, a(4) = 1256395, a(5) = 699971370, and (4989600 + 5718768*n^7 + 1045440*n^8 + 123200*n^9 + 8448*n^10 + 256*n^11 + 30135960*n + 75458988*n^2 + 105258076*n^3 + 91991460*n^4 + 53358140*n^5 + 21100464*n^6)*a(n) + (-39916800 - 1756320*n^7 - 198720*n^8 - 13120*n^9 - 384*n^10 - 136306080*n - 205327944*n^2 - 179845580*n^3 - 101513280*n^4 - 38608500*n^5 - 10026072*n^6)*a(n + 1) + (19958400 + 17664*n^7 + 576*n^8 + 44868240*n + 43664892*n^2 + 24024336*n^3 + 8173284*n^4 + 1760640*n^5 + 234528*n^6)*a(n + 2) + (720720 + 144*n^7 + 1819364*n + 1758924*n^2 + 883226*n^3 + 254070*n^4 + 42356*n^5 + 3816*n^6)*a(n + 3) + (-183645 - 191119*n - 79608*n^2 - 16586*n^3 - 1728*n^4 - 72*n^5)*a(n + 4) + (-2706 - 1515*n - 285*n^2 - 18*n^3)*a(n + 5) + 3*a(n + 6)}. - Marni Mishna, Jun 17 2005
Linear differential equation satisfied by F(t)=Sum a(n) t^n/(2n)!: {F(0) = 1, - 3*t*(10*t^2 + 9*t^6 + 18*t^4 - 8 + t^10 - 6*t^8)*( - 2 - 2*t^2 + t^4)*(d/dt)F(t) + 9*t^4*( - 2 - 2*t^2 + t^4)^2*(d^2/dt^2)F(t) + t^2*(-2 - 2*t^2 + t^4)*(24*t^6 - 10*t^8 - 4*t^4 - 44*t^2 + t^10 - 48)*F(t)}. - Marni Mishna, Jun 17 2005 [Probably this defines A005814? - N. J. A. Sloane]
Equation (7.5.13) in Harary and Palmer gives asymptotic formula.
Asymptotic formula (7.5.13) exp(-2)*(6*n)!/(288^n*(3*n)!) by Harary and Palmer from this reference is for sequence A002829. - Vaclav Kotesovec, Mar 11 2014
Asymptotic for A005814 is: a(n) ~ exp(2) * (6*n)! / (288^n * (3*n)!), or a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n-2). - Vaclav Kotesovec, Mar 11 2014
Recurrence (of order 4): 3*a(n) = 9*(n-1)*n*(2*n-1)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(12*n-1)*a(n-2) - 2*(n-2)*n*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-2)*a(n-3) + 2*(n-3)*(n-1)*n*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*a(n-4). - Vaclav Kotesovec, Mar 11 2014

Extensions

More terms from Vladeta Jovovic, Mar 25 2001
Edited by N. J. A. Sloane, Apr 19 2007

A110040 Number of {2,3}-regular graphs; i.e., labeled simple graphs (no multi-edges or loops) on n vertices, each of degree 2 or 3.

Original entry on oeis.org

1, 0, 0, 1, 10, 112, 1760, 35150, 848932, 24243520, 805036704, 30649435140, 1322299270600, 64008728200384, 3447361661136640, 205070807479444088, 13388424264027157520, 953966524932871436800, 73817914562041635228928
Offset: 0

Views

Author

Marni Mishna, Jul 08 2005

Keywords

Comments

P-recursive.
Starting at n=3, number of symmetric binary matrices with all row sums 3. - R. H. Hardin, Jun 12 2008
From R. J. Mathar, Apr 07 2017: (Start)
These are the row sums of the following matrix, which counts symmetric n X n {0,1} matrices with each row and column sum equal to 3 and trace t, 0 <= t <= n:
0: 1
1: 0 0
2: 0 0 0
3: 0 0 0 1
4: 1 0 6 0 3
5: 0 30 0 70 0 12
6: 70 0 810 0 810 0 70
7: 0 5670 0 19355 0 9660 0 465
This has A001205 on the diagonal. (End)
The traceless (2n) X (2n) binary matrices in that triangle seem to be counted in A002829. - Alois P. Heinz, Apr 07 2017

Examples

			(Graphs listed by edgeset)
a(3)=1: {(1,2), (2,3), (3,1)}
a(4)=10: {(1,2), (2,3), (3,4), (4,1)}, {(1,2), (2,3), (3,4), (4,1), (1,4)}, {(1,2), (2,3), (3,4), (4,1), (2,3)}, {(1,2), (2,4), (3,4), (1,3)}, {(1,2), (2,4), (3,4), (1,3), (2,3)}, {(1,2), (2,4), (3,4), (1,3), (1,4)}, {(1,3), (2,3), (2,4), (1,4)}, {(1,3), (2,3), (2,4), (1,4), (1,2)}, {(1,3), (2,3), (2,4), (1,4), (3,4)}, {(1,2), (1,3), (1,4) (2,3), (2,4), (3,4)},
		

References

  • Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009]

Crossrefs

Cf. A000986 (sums 2), A000085 (sums 1), A139670 (sums 3).

Programs

  • Mathematica
    RecurrenceTable[{-b[n] - b[1 + n] + (-2 + 3*n)*b[2 + n] - 14*b[3 + n] + (105 + 30*n)*b[4 + n] + (-69 - 12*n)*b[5 + n] + (582 + 147*n + 9*n^2)* b[6 + n] + (-20 - 6*n)*b[7 + n] + (1160 + 363*n + 27*n^2)*b[8 + n] + (1554 + 255*n + 9*n^2)* b[9 + n] + (-2340 - 414*n - 18*n^2)*b[10 + n] + (-528 - 48*n)*b[11 + n] + (288 + 24*n)*b[12 + n] == 0, b[0] == 1, b[1] == 0, b[2] == 0, b[3] == 1/6, b[4] == 5/12, b[5] == 14/15, b[6] == 22/9, b[7] == 3515/504, b[8] == 30319/1440, b[9] == 10823/162, b[10] == 8385799/37800, b[11] == 510823919/665280}, b, {n, 0, 25}] * Range[0, 25]! (* Vaclav Kotesovec, Oct 23 2023 *)

Formula

Satisfies the linear recurrence: (-150917976*n^2 - 105258076*n^3 - 1925*n^9 - 13339535*n^5 - 45995730*n^4 - 357423*n^7 - 2637558*n^6 - 120543840*n - n^11 - 66*n^10 - 39916800 - 32670*n^8)*a(n) + (-11028590*n^4 - 65*n^9 - n^10 - 2310945*n^5 - 1860*n^8 - 30810*n^7 - 326613*n^6 - 80627040*n - 39916800 - 34967140*n^3 - 70290936*n^2)*a(n + 1) + (3*n^10 - 39916800 + 187*n^9 + 5076*n^8 + 78558*n^7 + 761103*n^6 + 4757403*n^5 + 18949074*n^4 + 44946092*n^3 + 51046344*n^2 - 793440*n)*a(n + 2) + (-93139200 - 16175880*n^3 - 56394184*n^2 - 110513760*n - 2854446*n^4 - 14*n^8 - 840*n^7 - 21756*n^6 - 317520*n^5)*a(n + 3) + (45780*n^6 + 1785*n^7 + 111580320*n^2 + 660450*n^5 + 5856270*n^4 + 32645865*n^3 + 174636000 + 213450300*n + 30*n^8)*a(n + 4) + (-22952160 - 681*n^6 - 16419*n^5 - 217995*n^4 - 8082204*n^2 - 20896956*n - 12*n^7 - 1721253*n^3)*a(n + 5) + (1804641*n^3 + 9*n^7 + 14442*n^5 + 208920*n^4 + 32266080 + 9307488*n^2 + 26537388*n + 552*n^6)*a(n + 6) + (-158400 - 15160*n - 3994*n^3 - 31072*n^2 - 6*n^5 - 248*n^4)*a(n + 7) + (20123*n^3 + 706210*n + 27*n^5 + 170067*n^2 + 1148400 + 1173*n^4)*a(n + 8) + (7899*n^2 + 60684*n + 444*n^3 + 9*n^4 + 170940)*a(n + 9) + (-6894*n - 25740 - 18*n^3 - 612*n^2)*a(n + 10) + (-48*n - 528)*a(n + 11) + 24*a(n + 12).
Differential equation satisfied by the exponential generating function {F(0) = 1, 9*t^4*(t^4 + t - 2 + 3*t^2)^2*(d^2/dt^2)F(t) + 3*t*(t^4 + t - 2 + 3*t^2)*(10*t^8 + 34*t^3 - 16*t + 16*t^6 - 2*t^5 - 24*t^2 - 4*t^7 + 8 + t^10 - 14*t^4)*(d/dt)F(t) - t^3*(-22*t^2 + t^8 - 24*t^3 + t^9 + 8*t^7 + 14*t^6 + 15*t^5 + 12 + 16*t + 9*t^4)*(t^4 + t - 2 + 3*t^2)*F(t)}.
Sum_{a_2 = 0..n} Sum_{d_2 = 0..min(floor((3n - 2a_2)/2), floor(n/2), n - a_2)} Sum_{d_3 = 0..min(floor((3n - 2a_2 - 2d_2)/3), floor((n-2d_2)/3), n - a_2 - d_2} Sum_{d_1 = 0..min(3n - 2a_2 - 2d_2 - 3d_3, n - 2d_2 - 3d_3) Sum_{b = 0..min(floor((3n - 2a_2 - 2d_2 - 3d_3 - d_1)/4), floor((n - d_2 - d_3 - a_2)/2)} Sum_{c = 0..min(floor((3n - 2a_2 - 2d_2 - 3d_3 - d_1 - 4b)/6), floor((n - a_2 - 2b - d_2 - d_3)/2))} Sum_{a_1 = ceiling((3n - (2a_2 + 4b + 6c + d_1 + 2d_2 + 3d_3))/2)..floor((3n - (2a_2 + 4b + 6c + d_1 + 2d_2 + 3d_3))/2)} (-1)^(a_2 + b + d_2)*n!*(2a_1 + d_1)!/(2^(n + a_1 - c - d_3)*3^(n - a_2 - 2b - d_2 - c)*a_1!*a_2!*b!*c!*d_1!*d_2!*d_3!*(n - a_2 - 2b - d_2 - 2c - d_3)!). - Shanzhen Gao, Jun 05 2009
Recurrence (of order 8): 12*(27*n^4 - 423*n^3 + 2427*n^2 - 5639*n + 4384)*a(n) = 6*(n-1)*(81*n^4 - 1242*n^3 + 7011*n^2 - 15528*n + 10352)*a(n-1) + 3*(n-2)*(n-1)*(81*n^5 - 1269*n^4 + 7551*n^3 - 20841*n^2 + 29934*n - 16040)*a(n-2) - 3*(n-2)*(n-1)*(135*n^5 - 2115*n^4 + 13287*n^3 - 37537*n^2 + 46430*n - 21848)*a(n-3) + (n-3)*(n-2)*(n-1)*(567*n^5 - 9396*n^4 + 59895*n^3 - 169590*n^2 + 191744*n - 57040)*a(n-4) - 2*(n-4)*(n-3)*(n-2)*(n-1)*(135*n^4 - 1386*n^3 + 5034*n^2 - 6529*n + 648)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^5 - 1566*n^4 + 11367*n^3 - 37080*n^2 + 47872*n - 17424)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^4 - 315*n^3 + 1113*n^2 - 1433*n + 348)*a(n-7) - (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n^4 - 315*n^3 + 1320*n^2 - 1946*n + 776)*a(n-8). - Vaclav Kotesovec, Oct 23 2023
a(n) ~ 3^(n/2) * n^(3*n/2) / (2^(n + 1/2) * exp(3*n/2 - sqrt(3*n) + 13/4)) * (1 + 119/(24*sqrt(3*n)) - 2519/(3456*n)). - Vaclav Kotesovec, Oct 27 2023, extended Oct 28 2023

Extensions

Edited and extended by Max Alekseyev, May 08 2010

A110101 a(n) is the number of 3-regular 3-hypergraphs on n labeled vertices. (In a 3-hypergraph, each hyper-edge is a proper 3-set; 3-regular implies that each vertex is in exactly 3 hyperedges.)

Original entry on oeis.org

1, 0, 0, 0, 1, 12, 330, 11205, 505505, 28787052, 2024844444, 172592502570, 17545270969545, 2098273032696720, 291739927315433454, 46676360010342811203
Offset: 0

Views

Author

Marni Mishna, Jul 11 2005

Keywords

Comments

P-recursive

Examples

			The 3-regular 3-hypergraphs on 4 vertices: {1,2,3}, {2,3,4},{3,4,1},{4,1,2}.
		

Crossrefs

Formula

Differential equation satisfied by exponential generating function: {F(0) = 1, 36*t^2*(t + 1)*(t^2 - 2)^2*(3*t^2 + 2*t - 2)^2*(d^2/dt^2)F(t) - 12*(t + 1)*(3*t^2 + 2*t - 2)*(3*t^10 + 2*t^9 - 8*t^8 - 40*t^7 - 56*t^6 + 4*t^5 - 48*t^4 - 96*t^3 + 80*t^2 + 80*t - 32)*(d/dt)F(t) + t^3*(t + 1)*(3*t^2 + 2*t - 2)*(3*t^9 + 2*t^8 - 2*t^7 - 108*t^6 - 144*t^5 + 32*t^4 - 24*t^3 + 16*t^2 + 112*t - 64)*F(t)}.
Linear recurrence for a(n): initial values: a(2) = 0, a(3) = 0, a(0) = 1, a(1) = 0, a(4) = 1, a(5) = 12, a(6) = 330, a(7) = 11205, a(8) = 505505, a(9) = 28787052, a(10) = 2024844444, a(11) = 172592502570, a(12) = 17545270969545;
then (1971620508*n^4 + 4242044664*n^3 + 3*n^12 + 4459328640*n + 1437004800 +
167310*n^9 + 5794678656*n^2 + 20779902*n^7 + 234*n^11 + 8151*n^10 + 2248389*n^8
+ 618210450*n^5 + 134970693*n^6)*a(n) + (154*n^10 + 77519860*n^5 + 334620440*n^4
+ 958003200 + 5280*n^9 + 106260*n^8 + 1392666*n^7 + 12460602*n^6 + 979793232*n^3
+ 1848236544*n^2 + 2014882560*n + 2*n^11)*a(n + 1) + ( - 96300*n^7 - 1200066*n^6
- 540148032*n^2 - 767940480*n - 4980*n^8 - 57398920*n^4 - 219822600*n^3
- 479001600 - 10060470*n^5 - 2*n^10 - 150*n^9)*a(n + 2) + ( - 97416*n^8
- 17244057600 - 24771847680*n - 2808*n^9 - 36*n^10 - 1978992*n^7 - 26064612*n^6
- 232501752*n^5 - 1422206064*n^4 - 5889271968*n^3 - 15795689472*n^2)*a(n
+ 3) + ( - 5364230400*n - 4790016000 - 24*n^9 - 1872*n^8 - 64368*n^7 - 1280160*n^6
- 16223256*n^5 - 135808848*n^4 - 750702432*n^3 - 2641118400*n^2)*a(n + 4)
+ (3252704*n^5 + 2043740160 + 194208*n^6 + 2058817536*n + 33702144*n^4 +
221164160*n^3 + 897495552*n^2 + 6560*n^7 + 96*n^8)*a(n + 5) + (246432*n^6
+ 48931572*n^4 + 4055546880 + 1512709248*n^2 + 4406952*n^5 + 7824*n^7 +
345350856*n^3 + 108*n^8 + 3758813568*n)*a(n + 6) + (528439296*n + 2696360*n^4
+ 27036368*n^3 + 161115712*n^2 + 159784*n^5 + 5208*n^6 + 72*n^7 + 735989760)*a(n
+ 7) + ( - 59595808*n^2 - 8517816*n^3 - 338532480 - 504*n^6 - 680168*n^4
- 220837728*n - 28776*n^5)*a(n + 8) + ( - 262432*n^3 - 288*n^5 - 11355392*n
- 13824*n^4 - 20613120 - 2459328*n^2)*a(n + 9) + (31392*n^3 + 3713184*n
+ 720*n^4 + 512496*n^2 + 10074240)*a(n + 10) + (253440 + 288*n^3 + 8544*n^2
+ 82176*n)*a(n + 11) + ( - 7584*n - 49536 - 288*n^2)*a(n + 12) + 384*a(n + 13).
a(n) ~ n^(2*n) * 3^(n+1/2) / (exp(2*n+2) * 4^n). - Vaclav Kotesovec, Mar 11 2014
Recurrence (of order 11): 192*(243*n^2 - 285*n - 290)*a(n) = 144*(n-1)*(243*n^3 - 285*n^2 + 34*n + 796)*a(n-1) + 48*(n-2)*(n-1)*(1701*n^2 - 24*n + 1027)*a(n-2) - 48*(n-3)*(n-2)*(n-1)*(729*n^3 - 2556*n^2 - 2601*n + 2558)*a(n-3) + 8*(n-3)*(n-2)*(n-1)*(3645*n^3 - 7110*n^2 - 35091*n + 30676)*a(n-4) + 12*(n-4)*(n-3)*(n-2)*(n-1)*(729*n^4 - 4500*n^3 + 1623*n^2 + 12924*n - 11872)*a(n-5) + 8*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(729*n^3 - 4338*n^2 - 1728*n + 3269)*a(n-6) - 8*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(486*n^2 + 2145*n - 3485)*a(n-7) - 12*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(243*n^3 - 1014*n^2 - 1304*n + 1619)*a(n-8) + 24*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(18*n - 13)*a(n-9) - 6*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(27*n - 71)*a(n-10) + (n-10)*(n-9)*(n-8)*(n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(243*n^2 + 201*n - 332)*a(n-11). - Vaclav Kotesovec, Mar 11 2014

Extensions

Replaced broken link, Vaclav Kotesovec, Mar 11 2014
Showing 1-10 of 25 results. Next