cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A295193 Number of regular simple graphs on n labeled nodes.

Original entry on oeis.org

1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
Offset: 1

Views

Author

Álvar Ibeas, Nov 16 2017

Keywords

Examples

			From _Gus Wiseman_, Dec 19 2018: (Start)
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
  1 2
  3 4
.
  4---1  3---1  2---1
  3---2  4---2  4---3
.
  3---4  4---3  4---2
  |   |  |   |  |   |
  1---2  1---2  1---3
.
  4---3
  | X |
  2---1
(End)
		

Crossrefs

Row sums of A059441.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,9}] (* Gus Wiseman, Dec 19 2018 *)
  • PARI
    \\ See link for program file.
    for(n=1, 10, print1(A295193(n), ", ")) \\ Andrew Howroyd, Aug 28 2019

Extensions

a(16)-a(18) from Andrew Howroyd, Aug 28 2019

A059441 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			1;
1,   1;
1,   0,       1;
1,   3,       3,        1;
1,   0,      12,        0,          1;
1,  15,      70,       70,         15,    1;
1,   0,     465,        0,        465,    0,   1;
1, 105,    3507,    19355,      19355, 3507, 105, 1;
1,   0,   30016,        0,    1024380, ...;
1, 945,  286884, 11180820,   66462606, ...;
1,   0, 3026655,        0, 5188453830, ...;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.

Crossrefs

Row sums are A295193.
Columns: A123023 (k=1), A001205 (k=2), A002829 (k=3, with alternating zeros), A005815 (k=4), A338978 (k=5, with alternating zeros), A339847 (k=6).
Cf. A051031 (unlabeled case), A324163 (connected case), A333351 (multigraphs).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
  • PARI
    for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(37)-a(55) from Andrew Howroyd, Aug 25 2017

A322635 Number of regular graphs with loops on n labeled vertices.

Original entry on oeis.org

2, 4, 4, 24, 78, 1908, 23368, 1961200, 75942758, 25703384940, 4184912454930, 4462909435830552, 2245354417775573206, 10567193418810168583576, 24001585002447984453495392, 348615956932626441906675011568, 2412972383955442904868321667433106, 162906453913051798826796439651249753404
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. A loop adds 2 to the degree of its vertex.

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2n}],{n,6}]
  • PARI
    for(n=1, 10, print1(A322635(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(11)-a(18) from Andrew Howroyd, Aug 28 2019

A319729 Regular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices where all non-isolated vertices have degree k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 7, 1, 1, 25, 37, 5, 1, 1, 75, 207, 85, 21, 1, 1, 231, 1347, 525, 591, 7, 1, 1, 763, 10125, 21385, 23551, 3535, 113, 1, 1, 2619, 86173, 180201, 1216701, 31647, 30997, 9, 1, 1, 9495, 819133, 12066705, 77636583, 66620631, 11485825, 286929, 955, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Examples

			Triangle begins:
  1
  1       1
  1       3       1
  1       9       7       1
  1      25      37       5       1
  1      75     207      85      21       1
  1     231    1347     525     591       7       1
  1     763   10125   21385   23551    3535     113       1
  1    2619   86173  180201 1216701   31647   30997       9       1
		

Crossrefs

Programs

  • Mathematica
    Table[If[k==0,1,Sum[Binomial[n,sup]*SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[sup],{2}]}],Sequence@@Table[{x[i],0,k},{i,sup}]],{sup,n}]],{n,8},{k,0,n-1}]

Formula

T(n,k) = Sum_{i=1..n} binomial(n,i)*A059441(i,k) for k > 0. - Andrew Howroyd, Dec 26 2020

A322698 Number of regular graphs with half-edges on n labeled vertices.

Original entry on oeis.org

1, 2, 4, 10, 40, 278, 3554, 84590, 3776280, 317806466, 50710452574, 15414839551538, 8964708979273634, 10008446308186072290, 21518891146915893435358, 89320970210116481106835986, 717558285660687970023516336792, 11176382741327158622885664697124082, 338202509574712032788035618665293979610
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

A graph is regular if all vertices have the same degree. A half-edge is like a loop except it only adds 1 to the degree of its vertex.

Examples

			The a(3) = 10 edge sets:
  {}
  {{1},{2,3}}
  {{3},{1,2}}
  {{2},{1,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
  {{1},{3},{1,2},{2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Union/@Select[Tuples[Range[n],2],OrderedQ]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,6}]
  • PARI
    for(n=1, 10, print1(A322698(n), ", ")) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(10)-a(18) from Andrew Howroyd, Aug 28 2019

A322784 Number of multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 8, 29, 59, 311, 892, 4983, 21863, 126813, 678626, 4446565, 27644538, 195561593, 1384705697, 10613378402, 82864870101, 686673571479, 5832742205547, 51897707277698, 474889512098459, 4514467567213008, 44152005855085601, 446355422070799305, 4638590359349994120
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal.
Also the number of factorizations into factors > 1 of primorial powers k in A100778 with sum of prime indices A056239(k) equal to n.
a(n) is the number of nonequivalent nonnegative integer matrices without zero rows or columns with equal column sums and total sum n up to permutation of rows. - Andrew Howroyd, Jan 11 2020

Examples

			The a(1) = 1 through a(4) = 29 multiset partitions:
  {{1}}   {{1,1}}     {{1,1,1}}       {{1,1,1,1}}
          {{1,2}}     {{1,2,3}}       {{1,1,2,2}}
         {{1},{1}}   {{1},{1,1}}      {{1,2,3,4}}
         {{1},{2}}   {{1},{2,3}}     {{1},{1,1,1}}
                     {{2},{1,3}}     {{1,1},{1,1}}
                     {{3},{1,2}}     {{1},{1,2,2}}
                    {{1},{1},{1}}    {{1,1},{2,2}}
                    {{1},{2},{3}}    {{1,2},{1,2}}
                                     {{1},{2,3,4}}
                                     {{1,2},{3,4}}
                                     {{1,3},{2,4}}
                                     {{1,4},{2,3}}
                                     {{2},{1,1,2}}
                                     {{2},{1,3,4}}
                                     {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                    {{1},{1},{1,1}}
                                    {{1},{1},{2,2}}
                                    {{1},{2},{1,2}}
                                    {{1},{2},{3,4}}
                                    {{1},{3},{2,4}}
                                    {{1},{4},{2,3}}
                                    {{2},{2},{1,1}}
                                    {{2},{3},{1,4}}
                                    {{2},{4},{1,3}}
                                    {{3},{4},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Sum[u[Array[Prime,d,1,Times]^(n/d),Array[Prime,d,1,Times]^(n/d)],{d,Divisors[n]}],{n,12}]

Formula

a(n) = Sum_{d|n} A001055(A002110(n/d)^d).
a(n) = Sum_{d|n} A219727(n/d, d). - Andrew Howroyd, Jan 11 2020

Extensions

a(14)-a(15) from Alois P. Heinz, Jan 16 2019
Terms a(16) and beyond from Andrew Howroyd, Jan 11 2020

A322659 Number of connected regular simple graphs on n labeled vertices.

Original entry on oeis.org

1, 1, 1, 4, 13, 146, 826, 44808, 1074557, 155741296, 10381741786, 6939251270348, 2203360264480750, 4186526735251514044, 3747344007864300197810, 35041787059621536192399824, 156277111373298355107598128061, 4142122641757597729416733678931968
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

A graph is regular if all vertices have the same degree.

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n==1,1,Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],SameQ@@Length/@Split[Sort[Join@@#]],Length[csm[#]]==1]&]]],{n,6}]

Extensions

a(8)-a(15) from Andrew Howroyd, Dec 23 2018
a(16)-a(18) from Andrew Howroyd, Sep 02 2019

A322788 Irregular triangle read by rows where T(n,k) is the number of uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 2, 2, 5, 4, 3, 2, 2, 27, 11, 6, 4, 2, 2, 142, 29, 8, 4, 282, 12, 3, 1073, 101, 8, 4, 2, 2, 32034, 1581, 234, 75, 20, 6, 2, 2, 136853, 2660, 10, 4, 1527528, 1985, 91, 4, 4661087, 64596, 648, 20, 5, 2, 2, 227932993, 1280333, 41945, 231, 28, 6
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset partition is uniform if all parts have the same size.

Examples

			Triangle begins:
     1
     2    2
     2    2
     5    4    3
     2    2
    27   11    6    4
     2    2
   142   29    8    4
   282   12    3
  1073  101    8    4
The multiset partitions counted under row 6:
  {123456}          {112233}          {111222}          {111111}
  {123}{456}        {112}{233}        {111}{222}        {111}{111}
  {124}{356}        {113}{223}        {112}{122}        {11}{11}{11}
  {125}{346}        {122}{133}        {11}{12}{22}      {1}{1}{1}{1}{1}{1}
  {126}{345}        {123}{123}        {12}{12}{12}
  {134}{256}        {11}{22}{33}      {1}{1}{1}{2}{2}{2}
  {135}{246}        {11}{23}{23}
  {136}{245}        {12}{12}{33}
  {145}{236}        {12}{13}{23}
  {146}{235}        {13}{13}{22}
  {156}{234}        {1}{1}{2}{2}{3}{3}
  {12}{34}{56}
  {12}{35}{46}
  {12}{36}{45}
  {13}{24}{56}
  {13}{25}{46}
  {13}{26}{45}
  {14}{23}{56}
  {14}{25}{36}
  {14}{26}{35}
  {15}{23}{46}
  {15}{24}{36}
  {15}{26}{34}
  {16}{23}{45}
  {16}{24}{35}
  {16}{25}{34}
  {1}{2}{3}{4}{5}{6}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[Join@@Table[Range[n/d],{d}]],SameQ@@Length/@#&]],{n,10},{d,Divisors[n]}]

Formula

T(n,k) = A322794(A002110(n/d)^d), where d = A027750(n,k).

Extensions

More terms from Alois P. Heinz, Jan 30 2019
Terms a(38) and beyond from Andrew Howroyd, Feb 03 2022
Edited by Peter Munn, Mar 05 2025

A322704 Number of regular hypergraphs on n labeled vertices with no singletons.

Original entry on oeis.org

1, 1, 2, 4, 80, 209944
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree.

Examples

			The a(3) = 4 edge-sets:
  {}
  {{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,2^n-n-1}],{n,1,5}]

A322786 Irregular triangle read by rows where T(n,k) is the number of multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 5, 3, 15, 9, 5, 52, 7, 203, 66, 31, 11, 877, 15, 4140, 712, 109, 22, 21147, 686, 30, 115975, 10457, 339, 42, 678570, 56, 4213597, 198091, 27036, 6721, 1043, 77, 27644437, 101, 190899322, 4659138, 2998, 135, 1382958545, 1688360, 58616, 176
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Examples

			Triangle begins:
        1
        2       2
        5       3
       15       9       5
       52       7
      203      66      31      11
      877      15
     4140     712     109      22
    21147     686      30
   115975   10457     339      42
   678570      56
  4213597  198091   27036    6721    1043      77
For example, row 4 counts the following multiset partitions.
  {{1,2,3,4}}        {{1,1,2,2}}        {{1,1,1,1}}
  {{1},{2,3,4}}      {{1},{1,2,2}}      {{1},{1,1,1}}
  {{1,2},{3,4}}      {{1,1},{2,2}}      {{1,1},{1,1}}
  {{1,3},{2,4}}      {{1,2},{1,2}}      {{1},{1},{1,1}}
  {{1,4},{2,3}}      {{2},{1,1,2}}      {{1},{1},{1},{1}}
  {{2},{1,3,4}}      {{1},{1},{2,2}}
  {{3},{1,2,4}}      {{1},{2},{1,2}}
  {{4},{1,2,3}}      {{2},{2},{1,1}}
  {{1},{2},{3,4}}    {{1},{1},{2},{2}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{4},{1,2}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Table[u[Array[Prime,n/d,1,Times]^d,Array[Prime,n/d,1,Times]^d],{d,Divisors[n]}],{n,10}]
  • PARI
    \\ needs T(n,k) from A219727.
    Row(n)={[T(d,n/d) | d<-divisors(n)]}
    { for(n=1, 12, print(Row(n))) } \\ Andrew Howroyd, Jan 11 2020

Formula

T(n,k) = A001055(A002110(n/d)^d), where d = A027750(n,k).
T(n,k) = A219727(d, n/d), where d = A027750(n, k). - Andrew Howroyd, Jan 11 2020

Extensions

Edited by Peter Munn, Mar 05 2025
Showing 1-10 of 14 results. Next