A322661
Number of graphs with loops spanning n labeled vertices.
Original entry on oeis.org
1, 1, 5, 45, 809, 28217, 1914733, 254409765, 66628946641, 34575388318705, 35680013894626133, 73392583417010454429, 301348381381966079690489, 2471956814761996896091805993, 40530184362443281653842556898237, 1328619783326799871943604598592805525
Offset: 0
The a(2) = 5 edge-sets:
{{1,2}}
{{1,1},{1,2}}
{{1,1},{2,2}}
{{1,2},{2,2}}
{{1,1},{1,2},{2,2}}
-
Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^Binomial[k+1,2],{k,0,n}],{n,10}]
(* second program *)
Table[Select[Expand[Product[1+x[i]*x[j],{j,n},{i,j}]],And@@Table[!FreeQ[#,x[i]],{i,n}]&]/.x[_]->1,{n,7}]
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*2^binomial(k+1,2)) \\ Andrew Howroyd, Jan 06 2024
A322700
Number of unlabeled graphs with loops spanning n vertices.
Original entry on oeis.org
1, 1, 4, 14, 70, 454, 4552, 74168, 2129348, 111535148, 10812483376, 1945437208224, 650378721156736, 404749938336404704, 470163239887698967104, 1022592854829028311090816, 4177826139658552046627175072, 32163829440870460348768023969632
Offset: 0
-
Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Select[Tuples[Range[n],2],OrderedQ]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length],{prm,Permutations[Range[n]]}]/n!,{n,0,8}]//Differences (* Mathematica 8.0+ *)
-
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A322700(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))-sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n-1))) if n else 1 # Chai Wah Wu, Jul 14 2024
A059441
Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1
1;
1, 1;
1, 0, 1;
1, 3, 3, 1;
1, 0, 12, 0, 1;
1, 15, 70, 70, 15, 1;
1, 0, 465, 0, 465, 0, 1;
1, 105, 3507, 19355, 19355, 3507, 105, 1;
1, 0, 30016, 0, 1024380, ...;
1, 945, 286884, 11180820, 66462606, ...;
1, 0, 3026655, 0, 5188453830, ...;
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
- Andrew Howroyd, Table of n, a(n) for n = 1..300 (rows 1..24)
- Denis S. Krotov, [[2,10],[6,6]]-equitable partitions of the 12-cube, arXiv:2012.00038 [math.CO], 2020.
- Brendan D. McKay, Applications of a technique for labeled enumeration, Congress. Numerantium, 40 (1983), 207-221. See page 216.
- Wikipedia, Regular graph
-
Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
-
for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019
A322659
Number of connected regular simple graphs on n labeled vertices.
Original entry on oeis.org
1, 1, 1, 4, 13, 146, 826, 44808, 1074557, 155741296, 10381741786, 6939251270348, 2203360264480750, 4186526735251514044, 3747344007864300197810, 35041787059621536192399824, 156277111373298355107598128061, 4142122641757597729416733678931968
Offset: 1
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[If[n==1,1,Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],SameQ@@Length/@Split[Sort[Join@@#]],Length[csm[#]]==1]&]]],{n,6}]
A333158
Irregular triangle read by rows: T(n,k) is the number of k-regular graphs on n labeled nodes with loops allowed, n >= 1, 0 <= k <= n + 1.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 3, 8, 8, 3, 1, 1, 0, 38, 0, 38, 0, 1, 1, 15, 208, 730, 730, 208, 15, 1, 1, 0, 1348, 0, 20670, 0, 1348, 0, 1, 1, 105, 10126, 188790, 781578, 781578, 188790, 10126, 105, 1, 1, 0, 86174, 0, 37885204, 0, 37885204, 0, 86174, 0, 1
Offset: 1
Triangle begins:
1, 0, 1;
1, 1, 1, 1;
1, 0, 2, 0, 1;
1, 3, 8, 8, 3, 1;
1, 0, 38, 0, 38, 0, 1;
1, 15, 208, 730, 730, 208, 15, 1;
1, 0, 1348, 0, 20670, 0, 1348, 0, 1;
1, 105, 10126, 188790, 781578, 781578, 188790, 10126, 105, 1;
...
A370165
Number of labeled loop-graphs covering n vertices without a non-loop edge with loops at both ends.
Original entry on oeis.org
1, 1, 4, 29, 400, 10289, 496548, 45455677, 7983420736, 2716094133313, 1803251169342820, 2348787270663723581, 6024912118926389490448, 30516957491540079828757553, 305811332460677494410532494660, 6071677788061208810793717466942237
Offset: 0
The a(3) = 29 loop-graphs (loops shown as singletons):
{1,23} {1,2,3} {1,2,13,23}
{2,13} {1,2,13} {1,3,12,23}
{3,12} {1,2,23} {2,3,12,13}
{12,13} {1,3,12} {1,12,13,23}
{12,23} {1,3,23} {2,12,13,23}
{13,23} {2,3,12} {3,12,13,23}
{2,3,13}
{1,12,13}
{1,12,23}
{1,13,23}
{2,12,13}
{2,12,23}
{2,13,23}
{3,12,13}
{3,12,23}
{3,13,23}
{12,13,23}
The non-covering version is
A079491.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&!MatchQ[#, {_,{x_},_,{y_},_,{x_,y_},_}]&]],{n,0,5}]
-
seq(n)={Vec(serlaplace(sum(k=0, n, exp((2^k-1)*x + O(x*x^n))*2^(k*(k-1)/2)*x^k/k!)))} \\ Andrew Howroyd, Feb 20 2024
Showing 1-6 of 6 results.
Comments