cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002829 Number of trivalent (or cubic) labeled graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 70, 19355, 11180820, 11555272575, 19506631814670, 50262958713792825, 187747837889699887800, 976273961160363172131825, 6840300875426184026353242750, 62870315446244013091262178375075, 741227949070136911068308523257857500
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
  • R. W. Robinson, Computer print-out, no date. Gives first 30 terms.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A059441. Cf. A005814.
See A004109 for connected graphs of this type.

Programs

  • Maple
    From R. J. Mathar, Oct 31 2010: (Start)
    A002829aux := proc(i) local a,j,k ; a := 0 ; for j from 0 to i do for k from 0 to 2*(i-j) do a := a+(-1)^(j+k)/j!*doublefactorial(2*i+2*k-1)/3^k/k!/(2*i-2*j-k)! ; end do: end do: a*3^i/2^i ; end proc:
    A002829 := proc(n) (2*n)!/6^n*add( A002829aux(i)/(n-i)!,i=0..n) ; end proc: seq(A002829(n),n=0..6) ; (End)
    egf := hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2)) * exp(-ln(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1):
    ser := convert(series(egf,x=0,30),polynom):
    seq(coeff(ser,x,i) * (2*i)!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
  • Mathematica
    Flatten[{1,RecurrenceTable[{2 (-3+n) (-2+n) (-1+n) (-7+2 n) (-5+2 n) (-3+2 n) (-1+2 n) (-4+3 n) (-1+3 n) a[-4+n]-2 (-2+n) (-1+n) (-5+2 n) (-3+2 n) (-1+2 n) (-1+3 n) (43-42 n+9 n^2) a[-3+n]-(-1+n) (-3+2 n) (-1+2 n) (-104+501 n-441 n^2+108 n^3) a[-2+n]-9 (-1+n) (-1+2 n) (-7+3 n) (2-4 n+3 n^2) a[-1+n]+3 (-7+3 n) (-4+3 n) a[n]==0,a[1]==0,a[2]==1,a[3]==70,a[4]==19355},a,{n,1,15}]}] (* Vaclav Kotesovec, Mar 11 2014 *)
    terms = 14;
    egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[ 1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
    CoefficientList[egf, x] (2 Range[0, terms-1])! (* Jean-François Alcover, Nov 23 2018, after Mark van Hoeij *)
  • PARI
    a(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ Michel Marcus, Jan 18 2018

Formula

From Vladeta Jovovic, Mar 25 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(2 * n) * x^n/(2 * n)! satisfies differential equation 6 * x^2 * (-x^2 - 2 * x + 2) * (d^2/dx^2)f(x) - (x^5 + 6 * x^4 + 6 * x^3 - 32 * x + 8) * (d/dx)f(x) + (x/6) * (-x^2 - 2 * x + 2)^2 * f(x) = 0.
Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 24 * n + 48) * v(n - 1) + (72 * n^3 - 432 * n^2 + 788 * n - 428) * v(n - 2) + (36 * n^4 - 324 * n^3 + 1052 * n^2 - 1428 * n + 664) * v(n - 3) + (36 * n^4 - 360 * n^3 + 1260 * n^2 - 1800 * n + 864) * v(n - 4) + (6 * n^5 - 94 * n^4 + 550 * n^3 - 1490 * n^2 + 1844 * n - 816) * v(n - 5) + (-n^5 + 15 * n^4 - 85 * n^3 + 225 * n^2 - 274 * n + 120) * v(n - 6) = 0. (End)
a(n) = Sum_{i=0..2*n} Sum_{k=0..min(floor((3*n-i)/3), floor((2*n-i)/2))} Sum_{j=0..min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2))} ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: hypergeom([1/6, 5/6],[],12*x/(x^2+8*x+4)^(3/2))*exp(-log(1/4*x^2+2*x+1)/4 - x/3 + (x^2+8*x+4)^(3/2)/(24*x) - 1/(3*x) - x^2/24 - 1). Multiply x^i by (2*i)! to get the generating function. - Mark van Hoeij, Nov 07 2011
From Vaclav Kotesovec, Mar 11 2014: (Start)
D-finite with recurrence: 3*(3*n-7)*(3*n-4)*a(n) = 9*(n-1)*(2*n-1)*(3*n-7)*(3*n^2 - 4*n + 2)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(108*n^3 - 441*n^2 + 501*n - 104)*a(n-2) + 2*(n-2)*(n-1)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-1)*(9*n^2 - 42*n + 43)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-4)*(3*n-1)*a(n-4).
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n+2). (End)

Extensions

More terms from Vladeta Jovovic, Mar 25 2001

A005815 Number of 4-valent labeled graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462606, 5188453830, 480413921130, 52113376310985, 6551246596501035, 945313907253606891, 155243722248524067795, 28797220460586826422720
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005814, A002829, A005816, A272905 (connected). A diagonal of A059441.

Programs

  • Maple
    egf := (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16));
    ser := convert(series(egf,x=0,40),polynom):
    seq(coeff(ser,x,i)*i!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
  • Mathematica
    max = 17; f[x_] := HypergeometricPFQ[{1/4, 3/4}, {}, -12*x*(x + 2)*(x - 1)/(x^3 + 2*x^2 - 6*x - 6)^2]*Exp[-x*(x^2 - 6)/(8*x + 16)]/(1 + x - x^2/3 - x^3/6)^ (1/2); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Jun 19 2012, from e.g.f. *)

Formula

From Vladeta Jovovic, Mar 26 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(n)*x^n/(n)! satisfies the differential equation 16*x^2*(x - 1)^2*(x + 2)^2*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)*(d^2/dx^2)y(x) - 4*(x^13 + 4*x^12 - 16*x^10 - 10*x^9 - 36*x^8 - 220*x^7 - 348*x^6 - 48*x^5 + 200*x^4 - 336*x^3 - 240*x^2 + 416*x - 96)*(d/dx)y(x) - x^4*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)^2*y(x) = 0.
Recurrence: a(n) = - 1/384*(( - 256*n^2 - 896*n + 1152)*a(n - 1) + (768*n^3 - 3648*n^2 + 5568*n - 2688)*a(n - 2) + ( - 192*n^4 + 3264*n^3 - 14784*n^2 + 24384*n - 12672)*a(n - 3) + (224*n^6 - 4512*n^5 + 36304*n^4 - 148160*n^3 + 320016*n^2 - 341728*n + 137856)*a(n - 5) + ( - 640*n^5 + 8800*n^4 - 46400*n^3 + 116000*n^2 - 135360*n + 57600)*a(n - 4) + ( - 24*n^10 + 1320*n^9 - 31680*n^8 + 435600*n^7 - 3786552*n^6 + 21649320*n^5 - 82006320*n^4 + 201828000*n^3 - 306085824*n^2 + 255087360*n - 87091200)*a(n - 11) + (64*n^10 - 3480*n^9 + 82692*n^8 - 1127232*n^7 + 9726024*n^6 - 55255032*n^5 + 208179908*n^4 - 510068208*n^3 + 770738352*n^2 - 640484928*n + 218211840)*a(n - 9) + (16*n^11 - 992*n^10 + 27256*n^9 - 437160*n^8 + 4536288*n^7 - 31876656*n^6 + 154182488*n^5 - 510784360*n^4 + 1128552896*n^3 - 1570313952*n^2 + 1223830656*n - 397716480)*a(n - 10) + ( - 128*n^8 + 5488*n^7 - 94576*n^6 + 864976*n^5 - 4606672*n^4 + 14604352*n^3 - 26753984*n^2 + 25611264*n - 9630720)*a(n - 7) + (16*n^9 - 576*n^8 + 8704*n^7 - 71680*n^6 + 348880*n^5 - 1013824*n^4 + 1673376*n^3 - 1333120*n^2 + 226944*n + 161280)*a(n - 8) + (128*n^7 - 2192*n^6 + 12048*n^5 - 8240*n^4 - 151248*n^3 + 565312*n^2 - 765248*n + 349440)*a(n - 6) + ( - 4*n^13 + 364*n^12 - 14924*n^11 + 364364*n^10 - 5897892*n^9 + 66678612*n^8 - 540145892*n^7 + 3163772612*n^6 - 13344475144*n^5 + 39830815024*n^4 - 81255012384*n^3 + 106386868224*n^2 - 79211036160*n + 24908083200)*a(n - 14) + ( - 4*n^13 + 360*n^12 - 14612*n^11 + 353496*n^10 - 5674812*n^9 + 63680760*n^8 - 512439356*n^7 + 2983811688*n^6 - 12520194544*n^5 + 37201987680*n^4 - 75598952832*n^3 + 98660630016*n^2 - 73265264640*n + 22992076800)*a(n - 13) + ( - 16*n^12 + 1244*n^11 - 43208*n^10 + 884620*n^9 - 11860728*n^8 + 109396452*n^7 - 709293464*n^6 + 3243764260*n^5 - 10331326456*n^4 + 22203205904*n^3 - 30301280928*n^2 + 23300910720*n - 7504358400)*a(n - 12) + ( - n^14 + 105*n^13 - 5005*n^12 + 143325*n^11 - 2749747*n^10 + 37312275*n^9 - 368411615*n^8 + 2681453775*n^7 - 14409322928*n^6 + 56663366760*n^5 - 159721605680*n^4 + 310989260400*n^3 - 392156797824*n^2 + 283465647360*n - 87178291200)*a(n - 15)). (End)
a(n) = Sum_{d=0..floor(n/2), c=0..floor(n/2-d), b=0..(n-2c-2d), f=0..(n-2c-2d-b), k=0..min(n-b-2c-2d-f, 2n-2f-2b-3c-4d), j=0..floor(k/2+f)} ((-1)^(k+2f-j+d)*n!*(k+2f)!(2(2n-k-2f-2b-3c-4d))!) / (2^(5n-2k-2f-3b-8c-7d) * 3^(n-b-c-2d-k-f)*(2n-k-2f-2b-3c-4d)!*(k+2f-2j)!*j!*b!*c!*d!*k!*f!*(n-b-2c-2d-k-f)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16)). - Mark van Hoeij, Nov 07 2011
a(n) ~ n^(2*n) * 2^(n+1/2) / (3^n * exp(2*n+15/4)). - Vaclav Kotesovec, Mar 11 2014

Extensions

More terms from Vladeta Jovovic, Mar 26 2001

A333467 Array read by antidiagonals: T(n,k) is the number of k-regular multigraphs on n labeled nodes, loops allowed, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 5, 3, 1, 1, 0, 3, 0, 17, 0, 1, 1, 1, 3, 15, 47, 73, 15, 1, 1, 0, 4, 0, 138, 0, 388, 0, 1, 1, 1, 4, 34, 306, 2021, 4720, 2461, 105, 1, 1, 0, 5, 0, 670, 0, 43581, 0, 18155, 0, 1, 1, 1, 5, 65, 1270, 25050, 291001, 1295493, 1256395, 152531, 945, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 23 2020

Keywords

Examples

			Array begins:
=============================================================
n\k | 0   1     2       3        4          5           6
----+--------------------------------------------------------
  0 | 1   1     1       1        1          1           1 ...
  1 | 1   0     1       0        1          0           1 ...
  2 | 1   1     2       2        3          3           4 ...
  3 | 1   0     5       0       15          0          34 ...
  4 | 1   3    17      47      138        306         670 ...
  5 | 1   0    73       0     2021          0       25050 ...
  6 | 1  15   388    4720    43581     291001     1594340 ...
  7 | 1   0  2461       0  1295493          0   159207201 ...
  8 | 1 105 18155 1256395 50752145 1296334697 23544232991 ...
  ...
		

Crossrefs

Rows n=0..3 are A000012, A059841, A008619, A006003.
Columns k=0..4 are A000012, A123023, A002135, A005814, A005816.
Cf. A059441 (graphs), A167625 (unlabeled nodes), A333351 (without loops).

Programs

  • Maple
    b:= proc(l, i) option remember; (n-> `if`(n=0, 1,
         `if`(l[n]=0, b(sort(subsop(n=[][], l)), n-1),
         `if`(i<1, 0, b(l, i-1)+`if`(i=n, `if`(l[n]>1,
          b(subsop(n=l[n]-2, l), i), 0), `if`(l[i]>0,
          b(subsop(i=l[i]-1, n=l[n]-1, l), i), 0))))))(nops(l))
        end:
    A:= (n, k)-> b([k$n], n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 23 2020
  • Mathematica
    b[l_, i_] := b[l, i] = Function[n, If[n == 0, 1, If[l[[n]] == 0, b[Sort[ ReplacePart[l, n -> Nothing]], n-1], If[i < 1, 0, b[l, i-1] + If[i == n, If[l[[n]] > 1, b[ReplacePart[l, n -> l[[n]]-2], i], 0], If[l[[i]] > 0, b[ReplacePart[l, {i -> l[[i]]-1, n -> l[[n]]-1}], i], 0]]]]]][Length[l]];
    A[n_, k_] := b[Table[k, {n}], n];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 07 2020, after Alois P. Heinz *)
  • PARI
    MultigraphsWLByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], forstep(e=0, limit, 2, recurse(n-r, limit, src[i, 1], 0, src[i, 2], e)))); Mat(M);
    }
    T(n, k)={if(n%2&&k%2, 0, vecsum(MultigraphsWLByDegreeSeq(n, k, (p, r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[, 2]))}
    { for(n=0, 8, for(k=0, 6, print1(T(n, k), ", ")); print) }

A188404 Number of (3*n) X n binary arrays with rows in nonincreasing order, 3 ones in every column and no more than 3 ones in any row.

Original entry on oeis.org

1, 4, 23, 214, 2698, 44288, 902962, 22262244, 648446612, 21940389584, 849992734124, 37273085398456, 1831837147680872, 100066601315825216, 6031974947471801512, 398733149802770699792, 28744536471179273843088, 2248840133521868856571456, 190105368229118222009348848
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2011

Keywords

Comments

Also, number of labeled graphs on n nodes with degree set {2,3}, with multiple edges and loops allowed. - N. J. A. Sloane, Sep 02 2013

Examples

			All solutions for 6 X 2:
..1..1....1..0....1..1....1..1
..1..1....1..0....1..0....1..1
..1..0....1..0....1..0....1..1
..0..1....0..1....0..1....0..0
..0..0....0..1....0..1....0..0
..0..0....0..1....0..0....0..0
		

Crossrefs

Row 3 of A188403.

Programs

  • Mathematica
    max=20; f[x_]:=Sum[a[n]*(x^(n)/n!),{n,0,max}]; a[0]=1; a[1]=1; coef = CoefficientList[9*x^3*(x^4 - x^2 + x-2)*f''[x] - 3*(x^10 - 2*x^8 + 2*x^6 - 6*x^5 + 8*x^4 + 2*x^3 + 8*x^2 + 16*x - 8)*f'[x] + (x^11 + x^10 - 6*x^9 - 4*x^8 + 11*x^7 - 15*x^6 + 8*x^5 - 2*x^3 + 12*x^2 - 24*x - 24)*f[x],x]; Table[a[n],{n,0,max}]/.Solve[Thread[coef[[2;;max]]==0]][[1]]//Rest (* Vaclav Kotesovec, Sep 14 2014 *)
    Flatten[{1,RecurrenceTable[{-(-7+n) * (-6+n) * (-5+n) * (-4+n) * (-3+n) * (-2+n) * (-1+n) * (-7+3 * n) * (4+114 * n-144 * n^2+27 * n^3) * a[-8+n]-(-6+n) * (-5+n) * (-4+n) * (-3+n) * (-2+n) * (-1+n) * (2+3 * n) * (-281+483 * n-225 * n^2+27 * n^3) * a[-7+n]+(-5+n) * (-4+n) * (-3+n) * (-2+n) * (-1+n) * (85-60 * n+9 * n^2) * (4+114 * n-144 * n^2+27 * n^3) * a[-6+n]+4 * (-4+n) * (-3+n) * (-2+n) * (-1+n) * (1112-3117 * n+2781 * n^2-864 * n^3+81 * n^4) * a[-5+n]-(-3+n) * (-2+n) * (-1+n) * (1820+4458 * n-14454 * n^2+10395 * n^3-2754 * n^4+243 * n^5) * a[-4+n]-3 * (-2+n) * (-1+n) * (-1892+6068 * n-7239 * n^2+3915 * n^3-945 * n^4+81 * n^5) * a[-3+n]-9 * (-1+n)^2 * (296+4904 * n-8256 * n^2+4563 * n^3-1026 * n^4+81 * n^5) * a[-2+n]-6 * (-728+9186 * n-16911 * n^2+10989 * n^3-2835 * n^4+243 * n^5) * a[-1+n]+12 * (-10+3 * n) * (-281+483 * n-225 * n^2+27 * n^3) * a[n]==0,a[2]==4,a[3]==23,a[4]==214,a[5]==2698,a[6]==44288,a[7]==902962,a[8]==22262244,a[9]==648446612},a,{n,2,20}]}] (* Vaclav Kotesovec, Sep 15 2014 *)

Formula

See Goulden and Jackson for the e.g.f. - N. J. A. Sloane, Sep 02 2013
Recurrence (for n>9): 12*(3*n - 10)*(27*n^3 - 225*n^2 + 483*n - 281)*a(n) = 6*(243*n^5 - 2835*n^4 + 10989*n^3 - 16911*n^2 + 9186*n - 728)*a(n-1) + 9*(n-1)^2*(81*n^5 - 1026*n^4 + 4563*n^3 - 8256*n^2 + 4904*n + 296)*a(n-2) + 3*(n-2)*(n-1)*(81*n^5 - 945*n^4 + 3915*n^3 - 7239*n^2 + 6068*n - 1892)*a(n-3) + (n-3)*(n-2)*(n-1)*(243*n^5 - 2754*n^4 + 10395*n^3 - 14454*n^2 + 4458*n + 1820)*a(n-4) - 4*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 864*n^3 + 2781*n^2 - 3117*n + 1112)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^2 - 60*n + 85)*(27*n^3 - 144*n^2 + 114*n + 4)*a(n-6) + (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n + 2)*(27*n^3 - 225*n^2 + 483*n - 281)*a(n-7) + (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n - 7)*(27*n^3 - 144*n^2 + 114*n + 4)*a(n-8). - Vaclav Kotesovec, Sep 14 2014
Asymptotics (Chyzak, 2003): a(n) ~ c * (n!)^(3/2) * (sqrt(3)/2)^n * exp(sqrt(3*n)) / n^(3/4), where c = 1/sqrt(2) * exp(3/4) / (2*Pi)^(3/4) = 0.37719937314536... . - Vaclav Kotesovec, Sep 14 2014

Extensions

More terms from Vaclav Kotesovec, Sep 14 2014

A110039 Number of 3-regular labeled graphs on 2n vertices with no multiple edges, but loops are allowed. (3-regular = trivalent and a loop incident on a vertex counts as two edges.)

Original entry on oeis.org

1, 1, 8, 730, 188790, 102737670, 102172297920, 167870491048260, 423971126389110300, 1559445481095305703900, 8010574937878696134151200, 55572909620219147733302926200, 506607333530572584517841616582600, 5931728848766374810152582924943605000
Offset: 0

Views

Author

Marni Mishna, Jul 08 2005

Keywords

Comments

Also the same as n X n symmetric matrices with {0,2}-entries on the diagonal and entries from {0,1} elsewhere, with row sum equal to 3.

Examples

			a(1)=1: {(1,1), (1,2), (2,2)}
		

References

  • Goulden, I. P.; Jackson, D. M. Labelled graphs with small vertex degrees and $P$-recursiveness. SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093)

Crossrefs

Programs

  • Mathematica
    max = 30; f[x_] := Sum[a[n]*(x^n/n!), {n, 0, max}]; a[0] = 1; a[1] = 1; coef = CoefficientList[ 9*x^3*(x^4 - 2)*f''[x] + 3*(x^10 - 2*x^8 - 5*x^6 - 18*x^2 + 8)*f'[x] - x*(x^4 - 4*x^2 + 2)*(x^6 - 2*x^2 + 12)*f[x], x]; Table[a[n], {n, 0, max, 2}]/. Solve[Thread[coef[[2 ;; max]] == 0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)

Formula

Differential equation satisfied by the e.g.f. F(t) = sum_n a(n)/2n! t^n: {F(0) = 1, (-t^5+4*t^4+52*t-20*t^2-24)*F(t) + (-144*t+48-12*t^3-12*t^4+6*t^5)*(d/dt)F(t) + (36*t^4-72*t^2)*(d^2/dt^2)F(t)}.
Recurrence: {(123200*n^9 + 30135960*n + 8448*n^10 + 256*n^11 + 105258076*n^3 + 4989600 + 53358140*n^5 + 75458988*n^2 + 91991460*n^4 + 21100464*n^6 + 5718768*n^7 + 1045440*n^8)*a(n) + (-24948000 - 12736*n^9 - 90804600*n - 384*n^10 - 134879084*n^3 - 32082204*n^5 - 145393020*n^2 - 80308236*n^4 - 8713656*n^6 - 1589856*n^7 - 186624*n^8)*a(n + 1) + (11840760*n + 6932520*n^3 + 4989600 + 544320*n^5 + 12084468*n^2 + 2446668*n^4 + 74592*n^6 + 5760*n^7 + 192*n^8)*a(n + 2) + (-1108800 - 2428000*n - 1014166*n^3 - 44740*n^5 - 2148828*n^2 - 278430*n^4 - 3912*n^6 - 144*n^7)*a(n + 3) + (-6435 - 3887*n - 780*n^2 - 52*n^3)*a(n + 4) + (3003 + 1635*n + 297*n^2 + 18*n^3)*a(n + 5) - 3*a(n + 6)}.
Goulden and Jackson give a differential equation satisfied by the e.g.f, which presumably agrees with the above. - N. J. A. Sloane, Sep 02 2013
Recurrence (for n > 5): 3*(9*n^2 - 27*n + 16)*a(n) = 3*(2*n - 1)*(27*n^4 - 108*n^3 + 138*n^2 - 63*n + 4)*a(n-1) - (n-1)*(2*n - 3)*(2*n - 1)*(3*n - 4)*(18*n^2 - 27*n - 13)*a(n-2) + 2*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(27*n^3 - 90*n^2 + 57*n + 8)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(9*n^2 - 9*n - 2)*a(n-4). - Vaclav Kotesovec, Sep 15 2014
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n). - Vaclav Kotesovec, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Sep 15 2014

A228694 Number of labeled graphs on 2n nodes with degree set {1,3}, with multiple edges and loops allowed.

Original entry on oeis.org

1, 5, 186, 22960, 6831650, 4071581010, 4297593045900, 7359945086654160, 19160998099781838300, 72124861521922576867500, 377272837054974521764903800, 2655805439512625993259947280000, 24502785480337947107875310460499800, 289788471352423824164622588783247815000
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    max=30; f[x_]:=Sum[a[n]*(x^n/n!),{n,0,max}]; a[0]=1; a[1]=5; coef = CoefficientList[9*x^3*(x^4 - 4*x^2 - 2)*f''[x] - 3*(x^10 - 14*x^8 + 41*x^6 + 36*x^4 + 2*x^2 - 8)*f'[x] + x*(x^10 - 18*x^8 + 120*x^6 - 272*x^4 - 324*x^2 - 120)*f[x],x]; Table[a[n],{n,0,max,2}]/.Solve[Thread[coef[[2;;max]]==0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)

Formula

See Goulden-Jackson for the e.g.f.
Recurrence (for n>5): 3*a(n) = 3*(2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + 3*(n-1)*(2*n - 3)*(2*n - 1)*(10*n + 7)*a(n-2) - 2*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n + 4)*a(n-3) + 2*(n-3)*(n-2)*(n+1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-4). - Vaclav Kotesovec, Sep 15 2014
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n-4). - Vaclav Kotesovec, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Sep 15 2014

A228695 Number of labeled graphs on 2n nodes with degree set {1,2,3}, with multiple edges and loops allowed.

Original entry on oeis.org

1, 1, 7, 47, 521, 7233, 129443, 2811701, 73203561, 2229207953, 78389689559, 3138945552419, 141714151130833, 7146006410498833, 399443567886826899, 24581290495461129817, 1655664011866577666737, 121413069330848040859809, 9648772995329567310573319
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    max=20; f[x_]:=Sum[a[n]*(x^(n)/n!),{n,0,max}]; a[0]=1; a[1]=1; coef = CoefficientList[9*x^3*(x+2)*(x^3 - 2*x^2 + x - 1)*f''[x] - 3*(x^10 - 10*x^8 - 6*x^7 + 22*x^6 + 8*x^5 + 20*x^4 + 26*x^3 + 16*x - 8)*f'[x] + (x^11 - 2*x^10 - 14*x^9 + 24*x^8 + 74*x^7 - 61*x^6 - 99*x^5 - 55*x^4 - 180*x^3 - 48*x^2 - 96*x - 24)*f[x],x]; Table[a[n],{n,0,max}]/.Solve[Thread[coef[[2;;max]]==0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)

Formula

See Goulden-Jackson for the e.g.f.
Recurrence (for n>9): 12*(3*n^4 - 19*n^3 + 19*n^2 + 24*n - 31)*a(n) = 6*(9*n^5 - 57*n^4 + 35*n^3 + 160*n^2 - 151*n - 4)*a(n-1) + 9*(n-1)*(3*n^6 - 25*n^5 + 61*n^4 - 16*n^3 - 135*n^2 + 104*n - 4)*a(n-2) + 3*(n-2)*(n-1)*(21*n^5 - 106*n^4 - 62*n^3 + 603*n^2 - 448*n - 6)*a(n-3) + 3*(n-3)*(n-2)*(n-1)*(21*n^5 - 106*n^4 + 15*n^3 + 208*n^2 - 209*n - 46)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*(51*n^4 - 77*n^3 - 526*n^2 + 477*n - 110)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(9*n^5 - 42*n^4 - 29*n^3 + 159*n^2 - 120*n + 30)*a(n-6) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(6*n^4 - 14*n^3 - 11*n^2 + 22*n + 10)*a(n-7) + (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n^4 - 7*n^3 - 20*n^2 + 17*n - 4)*a(n-8). - Vaclav Kotesovec, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Sep 15 2014
Showing 1-7 of 7 results.