cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002135 Number of terms in a symmetrical determinant: a(n) = n*a(n-1) - (n-1)*(n-2)*a(n-3)/2.

Original entry on oeis.org

1, 1, 2, 5, 17, 73, 388, 2461, 18155, 152531, 1436714, 14986879, 171453343, 2134070335, 28708008128, 415017867707, 6416208498137, 105630583492969, 1844908072865290, 34071573484225549, 663368639907213281, 13580208904207073801
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of collections of necklaces created by using exactly n different colored beads (to make the entire collection). - Geoffrey Critzer, Apr 19 2009
a(n) is the number of ways that a deck with 2 cards of each of n types may be dealt into n hands of 2 cards each, assuming that the order of the hands and the order of the cards in each hand are irrelevant. See the Art of Problem Solving link for proof. - Joel B. Lewis, Sep 30 2012
From Bruce Westbury, Jan 22 2013: (Start)
It follows from the respective exponential generating functions that A002135 is the binomial transform of A002137:
A002135(n) = Sum_{k=0..n} binomial(n,k)*A002137(k),
2 = 1.1 + 2.0 + 1.1,
5 = 1.1 + 3.0 + 3.1 + 1.1,
17 = 1.1 + 4.0 + 6.1 + 4.1 + 1.6, ...
A002137 arises from looking at the dimension of the space of invariant tensors of the r-th tensor power of the adjoint representation of the symplectic group Sp(2n) (for n large compared to r).
(End)
a(n) is the number of representations required for the symbolic central moments of order 2 for the multivariate normal distribution, that is, E[X1^2 X2^2 .. Xn^2|mu=0, Sigma] (Phillips 2010). These representations are the upper-triangular, positive integer matrices for which for each i, the sum of the i-th row and i-th column equals 2, the power of each component. This can be shown starting from the formulation by Joel B Lewis. See "Proof for multivariate normal moments" link below for a proof. - Kem Phillips, Aug 20 2014
Equivalent to Critzer's comment, a(n) is the number of ways to cover n labeled vertices by disjoint undirected cycles, hence the exponential transform of A001710(n - 1). - Gus Wiseman, Oct 20 2018

Examples

			For n = 3, the a(3) = 5 ways to deal out the deck {1, 1, 2, 2, 3, 3} into three two-card hands are {11, 22, 33}, {12, 12, 33}, {13, 13, 22}, {11, 23, 23}, {12, 13, 23}. - _Joel B. Lewis_, Sep 30 2012
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, a_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.9 and Problem 5.22.

Crossrefs

A diagonal of A260338.
Row sums of A215771.
Column k=2 of A257463 and A333467.

Programs

  • Maple
    G:=proc(n) option remember; if n <= 1 then 1 elif n=2 then
    2 else n*G(n-1)-binomial(n-1,2)*G(n-3); fi; end;
  • Mathematica
    a[x_]:=Log[1/(1-x)^(1/2)]+x/2+x^2/4;Range[0, 20]! CoefficientList[Series[Exp[a[x]], {x, 0, 20}], x]
    RecurrenceTable[{a[0]==a[1]==1,a[2]==2,a[n]==n*a[n-1]-(n-1)(n-2)* a[n-3]/2}, a,{n,30}] (* Harvey P. Dale, Dec 16 2011 *)
    Table[Sum[Binomial[k, i] Binomial[i - 1/2, n - k] (3^(k - i) n!)/(4^k k!) (-1)^(n - k - i), {k, 0, n}, {i, 0, k}], {n, 0, 12}] (* Emanuele Munarini, Aug 25 2017 *)
  • Maxima
    a(n):=sum(sum(binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-k-i),i,0,k),k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 25 2017 */
  • PARI
    a(n) = if(n<3, [1,1,2][n+1], n*a(n-1) - (n-1)*(n-2)*a(n-3)/2 ); /* Joerg Arndt, Apr 07 2013 */
    

Formula

E.g.f.: (1-x)^(-1/2)*exp(x/2+x^2/4).
D-finite with recurrence a(n+1) = (n+1)*a(n) - binomial(n, 2)*a(n-2). See Comtet.
Asymptotics: a(n) ~ sqrt(2)*exp(3/4-n)*n^n*(1+O(1/n)). - Pietro Majer, Oct 27 2009
E.g.f.: G(0)/sqrt(1-x) where G(k) = 1 + x*(x+2)/(4*(2*k+1) - 4*x*(x+2)*(2*k+1)/(x*(x+2) + 8*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 31 2013
a(n) = Sum_{k=0..n} Sum_{i=0..k} binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-k-i). - Emanuele Munarini, Aug 25 2017

A167625 Square array T(n,k), read by upward antidiagonals, counting isomorphism classes of k-regular multigraphs of order n, loops allowed.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 3, 2, 1, 1, 0, 5, 0, 3, 0, 1, 1, 7, 8, 7, 3, 1, 1, 0, 11, 0, 20, 0, 4, 0, 1, 1, 15, 31, 56, 32, 13, 4, 1, 1, 0, 22, 0, 187, 0, 66, 0, 5, 0, 1, 1, 30, 140, 654, 727, 384, 101, 22, 5, 1, 1, 0, 42, 0, 2705, 0, 3369, 0, 181, 0, 6, 0, 1, 1, 56, 722, 12587, 42703
Offset: 1

Views

Author

Jason Kimberley, Nov 07 2009

Keywords

Comments

The number of vertices n is positive; valency k is nonnegative.
Each loop contributes two to the valency of its vertex.
The antidiagonal having coordinate sum t=n+k is read from T(t,0) to T(1,t-1).
Terms may be computed without generating each graph by enumerating the number of graphs by degree sequence. A PARI program showing this technique for graphs with labeled vertices is given in A333467. Burnside's lemma can be used to extend this method to the unlabeled case. - Andrew Howroyd, Mar 23 2020

Examples

			Array begins:
==============================================
n\k | 0 1  2   3    4     5      6       7
----+-----------------------------------------
  1 | 1 0  1   0    1     0      1       0 ...
  2 | 1 1  2   2    3     3      4       4 ...
  3 | 1 0  3   0    7     0     13       0 ...
  4 | 1 1  5   8   20    32     66     101 ...
  5 | 1 0  7   0   56     0    384       0 ...
  6 | 1 1 11  31  187   727   3369   12782 ...
  7 | 1 0 15   0  654     0  40365       0 ...
  8 | 1 1 22 140 2705 42703 675368 8584767 ...
  ...
		

Crossrefs

Column sequences: A000012 (k=0), A059841 (k=1), A000041 (k=2), A129427 (k=3), A129429 (k=4), A129431 (k=5), A129433 (k=6), A129435 (k=7), A129437 (k=8).
Cf. A333330 (loopless), A333397 (connected), A333467 (labeled).

Formula

T(n,k) = N\{S_n[S_k] * S_{nk/2}[S_2]\}.

A333351 Array read by antidiagonals: T(n,k) is the number of k-regular loopless multigraphs on n labeled nodes, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 0, 6, 0, 1, 1, 0, 1, 1, 10, 22, 15, 1, 1, 0, 1, 0, 15, 0, 130, 0, 1, 1, 0, 1, 1, 21, 158, 760, 822, 105, 1, 1, 0, 1, 0, 28, 0, 3355, 0, 6202, 0, 1, 1, 0, 1, 1, 36, 654, 12043, 93708, 190050, 52552, 945, 1, 1, 0, 1, 0, 45, 0, 36935, 0, 3535448, 0, 499194, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 15 2020

Keywords

Examples

			Array begins:
=================================================================
n\k | 0   1    2      3       4        5         6          7
----+------------------------------------------------------------
  0 | 1   1    1      1       1        1         1          1 ...
  1 | 1   0    0      0       0        0         0          0 ...
  2 | 1   1    1      1       1        1         1          1 ...
  3 | 1   0    1      0       1        0         1          0 ...
  4 | 1   3    6     10      15       21        28         36 ...
  5 | 1   0   22      0     158        0       654          0 ...
  6 | 1  15  130    760    3355    12043     36935     100135 ...
  7 | 1   0  822      0   93708        0   3226107          0 ...
  8 | 1 105 6202 190050 3535448 45163496 431400774 3270643750 ...
  ...
		

Crossrefs

Rows n=4..6 are A000217(n+1), A244868 (with interspersed zeros), A244878.
Columns k=0..4 are A000012, A123023, A002137, A108243 (with interspersed zeros), A367497.
Cf. A059441 (graphs), A333157, A333330 (unlabeled nodes), A333467 (with loops).

Programs

  • PARI
    MultigraphsByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, limit, src[i, 1], 0, src[i, 2], 0))); Mat(M);
    }
    T(n,k)={if((n%2&&k%2)||(n==1&&k>0), 0, vecsum(MultigraphsByDegreeSeq(n, k, (p,r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[,2]))}
    { for(n=0, 8, for(k=0, 7, print1(T(n,k), ", ")); print) }

A005814 Number of 3-regular (trivalent) labeled graphs on 2n vertices with multiple edges and loops allowed.

Original entry on oeis.org

1, 2, 47, 4720, 1256395, 699971370, 706862729265, 1173744972139740, 2987338986043236825, 11052457379522093985450, 57035105822280129537568575, 397137564714721907350936061400
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of representations required for the symbolic central moments of order 3 for the multivariate normal distribution, that is, E[X1^3 X2^3 .. Xn^3|mu=0, Sigma], where n is even. These representations are the upper-triangular, positive integer matrices for which for each i, the sum of the i-th row and i-th column equals 3, the power of each component. See Phillips links below. - Kem Phillips, Aug 18 2014

Examples

			a(1)=2: {(1,1), (1,2), (2,2)}, {(1,2), (1,2), (1,2)}.
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 175, (7.5.12).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Even bisection of column k=3 of A333467.

Programs

  • Mathematica
    max = 11; f[x_] := Sum[a[2n]*(x^n/(2n)!), {n, 0, max}]; a[0] = 1; coes = CoefficientList[ 6x^2*(x^2 - 2x - 2)* f''[x] - (x^5 - 6x^4 + 6x^3 + 24x^2 + 16x - 8)*f'[x] + 1/6*(x^5 - 10x^4 + 24x^3 - 4x^2 - 44x - 48)*f[x], x]; Table[a[2 n], {n, 0, max}] /. Solve[Thread[coes[[1 ;; max]] == 0]][[1]](* Jean-François Alcover, Nov 29 2011 *)

Formula

From Vladeta Jovovic, Mar 25 2001: (Start)
E.g.f. f(x) = Sum_{n>=0} a(2 * n) * x^n/(2 * n)! satisfies the differential equation 6 * x^2 * (x^2 - 2 * x - 2) * (d^2/dx^2)f(x) - (x^5 - 6 * x^4 + 6 * x^3 + 24 * x^2 + 16 * x - 8) * (d/dx)f(x) + (1/6) * (x^5 - 10 * x^4 + 24 * x^3 - 4 * x^2 - 44 * x - 48) * f(x) = 0.
Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 120 * n - 96) * v(n - 1) + (-72 * n^3 + 288 * n^2 - 404 * n + 188) * v(n - 2) + (36 * n^4 - 396 * n^3 + 1472 * n^2 - 2184 * n + 1072) * v(n - 3) + (36 * n^4 - 336 * n^3 + 1116 * n^2 - 1536 * n + 720) * v(n - 4) + (-6 * n^5 + 80 * n^4 - 410 * n^3 + 1000 * n^2 - 1144 * n + 480) * v(n - 5) + (n^5 - 15 * n^4 + 85 * n^3 - 225 * n^2 + 274 * n - 120) * v(n - 6) = 0.
(End)
Linear recurrence satisfied by a(n): {a(0) = 1, a(1) = 2, a(2) = 47, a(3) = 4720, a(4) = 1256395, a(5) = 699971370, and (4989600 + 5718768*n^7 + 1045440*n^8 + 123200*n^9 + 8448*n^10 + 256*n^11 + 30135960*n + 75458988*n^2 + 105258076*n^3 + 91991460*n^4 + 53358140*n^5 + 21100464*n^6)*a(n) + (-39916800 - 1756320*n^7 - 198720*n^8 - 13120*n^9 - 384*n^10 - 136306080*n - 205327944*n^2 - 179845580*n^3 - 101513280*n^4 - 38608500*n^5 - 10026072*n^6)*a(n + 1) + (19958400 + 17664*n^7 + 576*n^8 + 44868240*n + 43664892*n^2 + 24024336*n^3 + 8173284*n^4 + 1760640*n^5 + 234528*n^6)*a(n + 2) + (720720 + 144*n^7 + 1819364*n + 1758924*n^2 + 883226*n^3 + 254070*n^4 + 42356*n^5 + 3816*n^6)*a(n + 3) + (-183645 - 191119*n - 79608*n^2 - 16586*n^3 - 1728*n^4 - 72*n^5)*a(n + 4) + (-2706 - 1515*n - 285*n^2 - 18*n^3)*a(n + 5) + 3*a(n + 6)}. - Marni Mishna, Jun 17 2005
Linear differential equation satisfied by F(t)=Sum a(n) t^n/(2n)!: {F(0) = 1, - 3*t*(10*t^2 + 9*t^6 + 18*t^4 - 8 + t^10 - 6*t^8)*( - 2 - 2*t^2 + t^4)*(d/dt)F(t) + 9*t^4*( - 2 - 2*t^2 + t^4)^2*(d^2/dt^2)F(t) + t^2*(-2 - 2*t^2 + t^4)*(24*t^6 - 10*t^8 - 4*t^4 - 44*t^2 + t^10 - 48)*F(t)}. - Marni Mishna, Jun 17 2005 [Probably this defines A005814? - N. J. A. Sloane]
Equation (7.5.13) in Harary and Palmer gives asymptotic formula.
Asymptotic formula (7.5.13) exp(-2)*(6*n)!/(288^n*(3*n)!) by Harary and Palmer from this reference is for sequence A002829. - Vaclav Kotesovec, Mar 11 2014
Asymptotic for A005814 is: a(n) ~ exp(2) * (6*n)! / (288^n * (3*n)!), or a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n-2). - Vaclav Kotesovec, Mar 11 2014
Recurrence (of order 4): 3*a(n) = 9*(n-1)*n*(2*n-1)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(12*n-1)*a(n-2) - 2*(n-2)*n*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-2)*a(n-3) + 2*(n-3)*(n-1)*n*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*a(n-4). - Vaclav Kotesovec, Mar 11 2014

Extensions

More terms from Vladeta Jovovic, Mar 25 2001
Edited by N. J. A. Sloane, Apr 19 2007

A005816 Number of 4-valent labeled graphs with n nodes where multiple edges and loops are allowed.

Original entry on oeis.org

1, 1, 3, 15, 138, 2021, 43581, 1295493, 50752145, 2533755933, 157055247261, 11836611005031, 1066129321651668, 113117849882149725, 13965580274228976213, 1985189312618723797371, 321932406123733248625851, 59079829666712346141491403, 12182062872168618012045410805
Offset: 0

Views

Author

Keywords

Comments

Each loop contributes 2 to the valency of its node.

References

  • Goulden, I. P.; Jackson, D. M.; Reilly, J. W.; The Hammond series of a symmetric function and its application to P-recursiveness. SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 179-193.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A333467.
Cf. A005815.
Cf. A129429 (unlabeled), A033301.

Formula

a(n) = N{E_n[S_4] * S_{2n}[S_2]}.

Extensions

Definition corrected by appending "where multiple edges and loops are allowed", reference to Read 1959, formula from Read 1959 (5.11), and new terms a(16), a(17), a(18) contributed by Jason Kimberley, Jan 22 2010
Showing 1-5 of 5 results.