cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A260337 Erroneous version of A002135.

Original entry on oeis.org

1, 2, 5, 17, 73, 388, 2461, 18156
Offset: 1

Views

Author

Keywords

A001710 Order of alternating group A_n, or number of even permutations of n letters.

Original entry on oeis.org

1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n-1) is also the number of ways that a 3-cycle in the symmetric group S_n can be written as a product of 2 long cycles (of length n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 14 2001
a(n) is the number of Hamiltonian circuit masks for an n X n adjacency matrix of an undirected graph. - Chad Brewbaker, Jan 31 2003
a(n-1) is the number of necklaces one can make with n distinct beads: n! bead permutations, divide by two to represent flipping the necklace over, divide by n to represent rotating the necklace. Related to Stirling numbers of the first kind, Stirling cycles. - Chad Brewbaker, Jan 31 2003
Number of increasing runs in all permutations of [n-1] (n>=2). Example: a(4)=12 because we have 12 increasing runs in all the permutations of [3] (shown in parentheses): (123), (13)(2), (3)(12), (2)(13), (23)(1), (3)(2)(1). - Emeric Deutsch, Aug 28 2004
Minimum permanent over all n X n (0,1)-matrices with exactly n/2 zeros. - Simone Severini, Oct 15 2004
The number of permutations of 1..n that have 2 following 1 for n >= 1 is 0, 1, 3, 12, 60, 360, 2520, 20160, ... . - Jon Perry, Sep 20 2008
Starting (1, 3, 12, 60, ...) = binomial transform of A000153: (1, 2, 7, 32, 181, ...). - Gary W. Adamson, Dec 25 2008
First column of A092582. - Mats Granvik, Feb 08 2009
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=3) ~ exp(-x)/x*(1 - 3/x + 12/x^2 - 60/x^3 + 360/x^4 - 2520/x^5 + 20160/x^6 - 81440/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
For n>1: a(n) = A173333(n,2). - Reinhard Zumkeller, Feb 19 2010
Starting (1, 3, 12, 60, ...) = eigensequence of triangle A002260, (a triangle with k terms of (1,2,3,...) in each row given k=1,2,3,...). Example: a(6) = 360, generated from (1, 2, 3, 4, 5) dot (1, 1, 3, 12, 60) = (1 + 2 + 9 + 48 + 300). - Gary W. Adamson, Aug 02 2010
For n>=2: a(n) is the number of connected 2-regular labeled graphs on (n+1) nodes (Cf. A001205). - Geoffrey Critzer, Feb 16 2011.
The Fi1 and Fi2 triangle sums of A094638 are given by the terms of this sequence (n>=1). For the definition of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Also [1, 1] together with the row sums of triangle A162608. - Omar E. Pol, Mar 09 2012
a(n-1) is, for n>=2, also the number of necklaces with n beads (only C_n symmetry, no turnover) with n-1 distinct colors and signature c[.]^2 c[.]^(n-2). This means that two beads have the same color, and for n=2 the second factor is omitted. Say, cyclic(c[1]c[1]c[2]c[3]..c[n-1]), in short 1123...(n-1), taken cyclically. E.g., n=2: 11, n=3: 112, n=4: 1123, 1132, 1213, n=5: 11234, 11243, 11324, 11342, 11423, 11432, 12134, 12143, 13124, 13142, 14123, 14132. See the next-to-last entry in line n>=2 of the representative necklace partition array A212359. - Wolfdieter Lang, Jun 26 2012
For m >= 3, a(m-1) is the number of distinct Hamiltonian circuits in a complete simple graph with m vertices. See also A001286. - Stanislav Sykora, May 10 2014
In factorial base (A007623) these numbers have a simple pattern: 1, 1, 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000, 5500000000, 60000000000, 660000000000, 7000000000000, 77000000000000, 800000000000000, 8800000000000000, 90000000000000000, 990000000000000000, etc. See also the formula based on this observation, given below. - Antti Karttunen, Dec 19 2015
Also (by definition) the independence number of the n-transposition graph. - Eric W. Weisstein, May 21 2017
Number of permutations of n letters containing an even number of even cycles. - Michael Somos, Jul 11 2018
Equivalent to Brewbaker's and Sykora's comments, a(n - 1) is the number of undirected cycles covering n labeled vertices, hence the logarithmic transform of A002135. - Gus Wiseman, Oct 20 2018
For n >= 2 and a set of n distinct leaf labels, a(n) is the number of binary, rooted, leaf-labeled tree topologies that have a caterpillar shape (column k=1 of A306364). - Noah A Rosenberg, Feb 11 2019
Also the clique covering number of the n-Bruhat graph. - Eric W. Weisstein, Apr 19 2019
a(n) is the number of lattices of the form [s,w] in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
For n > 3, a(n) = p_1^e_1*...*p_m^e_m, where p_1 = 2 and e_m = 1. There exists p_1^x where x <= e_1 such that p_1^x*p_m^e_m is a primitive Zumkeller number (A180332) and p_1^e_1*p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 3, a(n) = p_1^e_1*p_m^e_m*r, where r is relatively prime to p_1*p_m, is also a Zumkeller number. - Ivan N. Ianakiev, Mar 11 2020
For n>1, a(n) is the number of permutations of [n] that have 1 and 2 as cycle-mates, that is, 1 and 2 are contained in the same cycle of a cyclic representation of permutations of [n]. For example, a(4) counts the 12 permutations with 1 and 2 as cycle-mates, namely, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2 3) (4), (1 3 2) (4), (1 2 4 )(3), (1 4 2)(3), (1 2)(3 4), and (1 2)(3)(4). Since a(n+2)=row sums of A162608, our result readily follows. - Dennis P. Walsh, May 28 2020

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n+1)= A046089(n, 1), n >= 1 (first column of triangle), A161739 (q(n) sequence).
Bisections are A002674 and A085990 (essentially).
Row 3 of A265609 (essentially).
Row sums of A307429.

Programs

  • Magma
    [1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
    
  • Maple
    seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
  • Mathematica
    a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
    a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
    Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
  • PARI
    {a(n) = if( n<2, n>=0, n!/2)};
    
  • PARI
    a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
    
  • PARI
    A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
    
  • Python
    from math import factorial
    def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
    
  • SageMath
    def A001710(n): return (factorial(n) +int(n<2))//2
    [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
  • Scheme
    ;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization
    (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
    ;; Antti Karttunen, Dec 19 2015
    

Formula

a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
First Eulerian transform of A000027. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
a(n) = ( A000254(n) - 2* A001711(n-3) )/3, n>2. - Gary Detlefs, May 24 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A006595(n-1)*n/A000124(n) for n>=2. - Anton Zakharov, Aug 23 2016
a(n) = A001563(n-1) - A001286(n-1) for n>=2. - Anton Zakharov, Sep 23 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004

A215771 Number T(n,k) of undirected labeled graphs on n nodes with exactly k cycle graphs as connected components; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 3, 7, 6, 1, 0, 12, 25, 25, 10, 1, 0, 60, 127, 120, 65, 15, 1, 0, 360, 777, 742, 420, 140, 21, 1, 0, 2520, 5547, 5446, 3157, 1190, 266, 28, 1, 0, 20160, 45216, 45559, 27342, 10857, 2898, 462, 36, 1, 0, 181440, 414144, 427275, 264925, 109935, 31899, 6300, 750, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 23 2012

Keywords

Comments

Also the Bell transform of A001710. For the definition of the Bell transform see A264428 and the links given there. - Peter Luschny, Jan 21 2016

Examples

			T(4,1) = 3:  .1-2.  .1 2.  .1-2.
.            .| |.  .|X|.  . X .
.            .3-4.  .3 4.  .3-4.
.
T(4,2) = 7:  .1 2.  .1-2.  .1 2.  o1 2.  .1 2o  .1-2.  .1-2.
.            .| |.  .   .  . X .  . /|.  .|\ .  . \|.  .|/ .
.            .3 4.  .3-4.  .3 4.  .3-4.  .3-4.  o3 4.  .3 4o
.
T(4,3) = 6:  .1 2o  .1-2.  o1 2.  o1 2o  o1 2.  .1 2o
.            .|  .  .   .  .  |.  .   .  . / .  . \ .
.            .3 4o  o3 4o  o3 4.  .3-4.  .3 4o  o3 4.
.
T(4,4) = 1:  o1 2o
.            .   .
.            o3 4o
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,   1;
  0,   1,   3,   1;
  0,   3,   7,   6,   1;
  0,  12,  25,  25,  10,   1;
  0,  60, 127, 120,  65,  15,  1;
  0, 360, 777, 742, 420, 140, 21,  1;
		

Crossrefs

Columns k=0-10 give: A000007, A001710(n-1) for n>0, A215772, A215763, A215764, A215765, A215766, A215767, A215768, A215769, A215770.
Diagonal and lower diagonals give: A000012, A000217, A001296, A215773, A215774.
Row sums give A002135.
T(2n,n) gives A253276.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1,
          add(binomial(n-1, i)*T(n-1-i, k-1)*ceil(i!/2), i=0..n-k)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);
    # Alternatively, with the function BellMatrix defined in A264428:
    BellMatrix(n -> `if`(n<2, 1, n!/2), 8); # Peter Luschny, Jan 21 2016
  • Mathematica
    t[n_, k_] := t[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*t[n-1-i, k-1]*Ceiling[i!/2], {i, 0, n-k}]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
    rows = 10;
    t = Table[If[n<2, 1, n!/2], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: factorial(n)//2 if n>=2 else 1, 8)

A257463 Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 10, 17, 1, 1, 1, 1, 3, 23, 93, 73, 1, 1, 1, 1, 4, 40, 465, 1417, 388, 1, 1, 1, 1, 4, 73, 1746, 19834, 32152, 2461, 1, 1, 1, 1, 5, 114, 5741, 190131, 1532489, 1016489, 18155, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Comments

Also number of ways to partition the multiset consisting of k copies each of 1, 2, ..., n into n multisets of size k.

Examples

			A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   2,     2,       3,        3,         4, ...
  1, 1,   5,    10,      23,       40,        73, ...
  1, 1,  17,    93,     465,     1746,      5741, ...
  1, 1,  73,  1417,   19834,   190131,   1398547, ...
  1, 1, 388, 32152, 1532489, 43816115, 848597563, ...
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A002135, A254243, A268668.
Rows n=0+1, 2-5 give: A000012, A008619, A257464, A253259, A253263.
Main diagonal gives A334286.
Cf. A257462, A257493 (ordered factorizations).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, k) option remember; `if`(n=1, 1,
          add(`if`(d>i or bigomega(d)<>k, 0,
          b(n/d, d, k)), d=divisors(n)))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]];
    A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k];
    Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)

A002137 Number of n X n symmetric matrices with nonnegative integer entries, trace 0 and all row sums 2.

Original entry on oeis.org

1, 0, 1, 1, 6, 22, 130, 822, 6202, 52552, 499194, 5238370, 60222844, 752587764, 10157945044, 147267180508, 2282355168060, 37655004171808, 658906772228668, 12188911634495388, 237669544014377896, 4871976826254018760, 104742902332392298296
Offset: 0

Views

Author

Keywords

Comments

The definition implies that the matrices are symmetric, have entries 0, 1 or 2, have 0's on the diagonal, and the entries in each row or column sum to 2.
From Victor S. Miller, Apr 26 2013: (Start)
A002137 also is the number of monomials in the determinant of a generic n X n symmetric matrix with 0's on the diagonal (see the paper of Aitken).
It is also the number of monomials in the determinant of the Cayley-Menger matrix. Even though this matrix is symmetric with 0's on the diagonal, it has 1's in the first row and column and so requires an extra argument. (End) [See the MathOverflow link for details of these bijections. - N. J. A. Sloane, Apr 27 2013]
From Bruce Westbury, Jan 22 2013: (Start)
It follows from the respective exponential generating functions that A002135 is the binomial transform of A002137:
A002135(n) = Sum_{k=0..n} C(n,k) * A002137(k),
2 = 1*1 + 2*0 + 1*1,
5 = 1*1 + 3*0 + 3*1 + 1*1,
17 = 1*1 + 4*0 + 6*1 + 4*1 + 1*6, ...
A002137 arises from looking at the dimension of the space of invariant tensors of the r-th tensor power of the adjoint representation of the symplectic group Sp(2n) (for n large compared to r). (End)
Also the number of subgraphs of a labeled K_n made up of cycles and isolated edges (but no isolated vertices). - Kellen Myers, Oct 17 2014

Examples

			a(2)=1 from
  02
  20
a(3)=1 from
  011
  101
  011
s(4)=6 from
  0200 0110
  2000 1001
  0002 1001
  0020 0110
  x3   x3
		

References

  • N. J. Calkin, J. E. Janoski, matrices of row and column sum 2, Congr. Numerantium 192 (2008) 19-32
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8.

Crossrefs

Column k=2 of A333351.
A diagonal of A260340.

Programs

  • Mathematica
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,n(b+c)-n(n-1) a/2}; Drop[Transpose[ NestList[ nxt,{0,1,0,1},30]][[2]],2] (* Harvey P. Dale, Jun 12 2013 *)
  • PARI
    x='x+O('x^66); Vec( serlaplace( (1-x)^(-1/2)*exp(-x/2+x^2/4) ) ) \\ Joerg Arndt, Apr 27 2013

Formula

E.g.f.: (1-x)^(-1/2)*exp(-x/2+x^2/4).
a(n) = (n-1)*(a(n-1)+a(n-2)) - (n-1)*(n-2)*a(n-3)/2.
a(n) ~ sqrt(2) * n^n / exp(n+1/4). - Vaclav Kotesovec, Feb 25 2014

A005814 Number of 3-regular (trivalent) labeled graphs on 2n vertices with multiple edges and loops allowed.

Original entry on oeis.org

1, 2, 47, 4720, 1256395, 699971370, 706862729265, 1173744972139740, 2987338986043236825, 11052457379522093985450, 57035105822280129537568575, 397137564714721907350936061400
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of representations required for the symbolic central moments of order 3 for the multivariate normal distribution, that is, E[X1^3 X2^3 .. Xn^3|mu=0, Sigma], where n is even. These representations are the upper-triangular, positive integer matrices for which for each i, the sum of the i-th row and i-th column equals 3, the power of each component. See Phillips links below. - Kem Phillips, Aug 18 2014

Examples

			a(1)=2: {(1,1), (1,2), (2,2)}, {(1,2), (1,2), (1,2)}.
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 175, (7.5.12).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Even bisection of column k=3 of A333467.

Programs

  • Mathematica
    max = 11; f[x_] := Sum[a[2n]*(x^n/(2n)!), {n, 0, max}]; a[0] = 1; coes = CoefficientList[ 6x^2*(x^2 - 2x - 2)* f''[x] - (x^5 - 6x^4 + 6x^3 + 24x^2 + 16x - 8)*f'[x] + 1/6*(x^5 - 10x^4 + 24x^3 - 4x^2 - 44x - 48)*f[x], x]; Table[a[2 n], {n, 0, max}] /. Solve[Thread[coes[[1 ;; max]] == 0]][[1]](* Jean-François Alcover, Nov 29 2011 *)

Formula

From Vladeta Jovovic, Mar 25 2001: (Start)
E.g.f. f(x) = Sum_{n>=0} a(2 * n) * x^n/(2 * n)! satisfies the differential equation 6 * x^2 * (x^2 - 2 * x - 2) * (d^2/dx^2)f(x) - (x^5 - 6 * x^4 + 6 * x^3 + 24 * x^2 + 16 * x - 8) * (d/dx)f(x) + (1/6) * (x^5 - 10 * x^4 + 24 * x^3 - 4 * x^2 - 44 * x - 48) * f(x) = 0.
Recurrence: a(2 * n) = (2 * n)!/n! * v(n) where 48 * v(n) + (-72 * n^2 + 120 * n - 96) * v(n - 1) + (-72 * n^3 + 288 * n^2 - 404 * n + 188) * v(n - 2) + (36 * n^4 - 396 * n^3 + 1472 * n^2 - 2184 * n + 1072) * v(n - 3) + (36 * n^4 - 336 * n^3 + 1116 * n^2 - 1536 * n + 720) * v(n - 4) + (-6 * n^5 + 80 * n^4 - 410 * n^3 + 1000 * n^2 - 1144 * n + 480) * v(n - 5) + (n^5 - 15 * n^4 + 85 * n^3 - 225 * n^2 + 274 * n - 120) * v(n - 6) = 0.
(End)
Linear recurrence satisfied by a(n): {a(0) = 1, a(1) = 2, a(2) = 47, a(3) = 4720, a(4) = 1256395, a(5) = 699971370, and (4989600 + 5718768*n^7 + 1045440*n^8 + 123200*n^9 + 8448*n^10 + 256*n^11 + 30135960*n + 75458988*n^2 + 105258076*n^3 + 91991460*n^4 + 53358140*n^5 + 21100464*n^6)*a(n) + (-39916800 - 1756320*n^7 - 198720*n^8 - 13120*n^9 - 384*n^10 - 136306080*n - 205327944*n^2 - 179845580*n^3 - 101513280*n^4 - 38608500*n^5 - 10026072*n^6)*a(n + 1) + (19958400 + 17664*n^7 + 576*n^8 + 44868240*n + 43664892*n^2 + 24024336*n^3 + 8173284*n^4 + 1760640*n^5 + 234528*n^6)*a(n + 2) + (720720 + 144*n^7 + 1819364*n + 1758924*n^2 + 883226*n^3 + 254070*n^4 + 42356*n^5 + 3816*n^6)*a(n + 3) + (-183645 - 191119*n - 79608*n^2 - 16586*n^3 - 1728*n^4 - 72*n^5)*a(n + 4) + (-2706 - 1515*n - 285*n^2 - 18*n^3)*a(n + 5) + 3*a(n + 6)}. - Marni Mishna, Jun 17 2005
Linear differential equation satisfied by F(t)=Sum a(n) t^n/(2n)!: {F(0) = 1, - 3*t*(10*t^2 + 9*t^6 + 18*t^4 - 8 + t^10 - 6*t^8)*( - 2 - 2*t^2 + t^4)*(d/dt)F(t) + 9*t^4*( - 2 - 2*t^2 + t^4)^2*(d^2/dt^2)F(t) + t^2*(-2 - 2*t^2 + t^4)*(24*t^6 - 10*t^8 - 4*t^4 - 44*t^2 + t^10 - 48)*F(t)}. - Marni Mishna, Jun 17 2005 [Probably this defines A005814? - N. J. A. Sloane]
Equation (7.5.13) in Harary and Palmer gives asymptotic formula.
Asymptotic formula (7.5.13) exp(-2)*(6*n)!/(288^n*(3*n)!) by Harary and Palmer from this reference is for sequence A002829. - Vaclav Kotesovec, Mar 11 2014
Asymptotic for A005814 is: a(n) ~ exp(2) * (6*n)! / (288^n * (3*n)!), or a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n-2). - Vaclav Kotesovec, Mar 11 2014
Recurrence (of order 4): 3*a(n) = 9*(n-1)*n*(2*n-1)*a(n-1) + (n-1)*(2*n-3)*(2*n-1)*(12*n-1)*a(n-2) - 2*(n-2)*n*(2*n-5)*(2*n-3)*(2*n-1)*(3*n-2)*a(n-3) + 2*(n-3)*(n-1)*n*(2*n-7)*(2*n-5)*(2*n-3)*(2*n-1)*a(n-4). - Vaclav Kotesovec, Mar 11 2014

Extensions

More terms from Vladeta Jovovic, Mar 25 2001
Edited by N. J. A. Sloane, Apr 19 2007

A333467 Array read by antidiagonals: T(n,k) is the number of k-regular multigraphs on n labeled nodes, loops allowed, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 5, 3, 1, 1, 0, 3, 0, 17, 0, 1, 1, 1, 3, 15, 47, 73, 15, 1, 1, 0, 4, 0, 138, 0, 388, 0, 1, 1, 1, 4, 34, 306, 2021, 4720, 2461, 105, 1, 1, 0, 5, 0, 670, 0, 43581, 0, 18155, 0, 1, 1, 1, 5, 65, 1270, 25050, 291001, 1295493, 1256395, 152531, 945, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 23 2020

Keywords

Examples

			Array begins:
=============================================================
n\k | 0   1     2       3        4          5           6
----+--------------------------------------------------------
  0 | 1   1     1       1        1          1           1 ...
  1 | 1   0     1       0        1          0           1 ...
  2 | 1   1     2       2        3          3           4 ...
  3 | 1   0     5       0       15          0          34 ...
  4 | 1   3    17      47      138        306         670 ...
  5 | 1   0    73       0     2021          0       25050 ...
  6 | 1  15   388    4720    43581     291001     1594340 ...
  7 | 1   0  2461       0  1295493          0   159207201 ...
  8 | 1 105 18155 1256395 50752145 1296334697 23544232991 ...
  ...
		

Crossrefs

Rows n=0..3 are A000012, A059841, A008619, A006003.
Columns k=0..4 are A000012, A123023, A002135, A005814, A005816.
Cf. A059441 (graphs), A167625 (unlabeled nodes), A333351 (without loops).

Programs

  • Maple
    b:= proc(l, i) option remember; (n-> `if`(n=0, 1,
         `if`(l[n]=0, b(sort(subsop(n=[][], l)), n-1),
         `if`(i<1, 0, b(l, i-1)+`if`(i=n, `if`(l[n]>1,
          b(subsop(n=l[n]-2, l), i), 0), `if`(l[i]>0,
          b(subsop(i=l[i]-1, n=l[n]-1, l), i), 0))))))(nops(l))
        end:
    A:= (n, k)-> b([k$n], n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 23 2020
  • Mathematica
    b[l_, i_] := b[l, i] = Function[n, If[n == 0, 1, If[l[[n]] == 0, b[Sort[ ReplacePart[l, n -> Nothing]], n-1], If[i < 1, 0, b[l, i-1] + If[i == n, If[l[[n]] > 1, b[ReplacePart[l, n -> l[[n]]-2], i], 0], If[l[[i]] > 0, b[ReplacePart[l, {i -> l[[i]]-1, n -> l[[n]]-1}], i], 0]]]]]][Length[l]];
    A[n_, k_] := b[Table[k, {n}], n];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 07 2020, after Alois P. Heinz *)
  • PARI
    MultigraphsWLByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], forstep(e=0, limit, 2, recurse(n-r, limit, src[i, 1], 0, src[i, 2], e)))); Mat(M);
    }
    T(n, k)={if(n%2&&k%2, 0, vecsum(MultigraphsWLByDegreeSeq(n, k, (p, r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[, 2]))}
    { for(n=0, 8, for(k=0, 6, print1(T(n, k), ", ")); print) }

A254243 Number of ways to partition the multiset consisting of 3 copies each of 1, 2, ..., n into n sets of size 3.

Original entry on oeis.org

1, 1, 2, 10, 93, 1417, 32152, 1016489, 42737945, 2307295021, 155607773014, 12823004639504, 1267907392540573, 148160916629902965, 20199662575448858212, 3177820001990224608763, 571395567211112572679633, 116448309072281063992943561, 26700057600529091443246943530
Offset: 0

Views

Author

Tatsuru Murai, Jan 27 2015

Keywords

Examples

			a(1) = 1: 111.
a(2) = 2: 111|222 and 112|122.
a(3) = 10: 111|222|333, 111|223|233, 112|122|333, 112|123|233, 112|133|223, 113|122|233, 113|123|223, 113|133|222, 122|123|133, and 123|123|123.
		

Crossrefs

Cf. A002135 (2 instead of 3), A254233 (n copies each of 1, 2, and 3).
Column k=3 of A257463.

Extensions

Name and example edited by Danny Rorabaugh, Apr 22 2015
a(6)-a(10) from Alois P. Heinz, Apr 22 2015
Terms a(11) and beyond from Andrew Howroyd, Apr 18 2020

A002771 Number of terms in a skew determinant: a(n) = (A000085(n) + A081919(n))/2.

Original entry on oeis.org

1, 2, 4, 13, 41, 226, 1072, 9374, 60958, 723916, 5892536, 86402812, 837641884, 14512333928, 162925851376, 3252104882056, 41477207604872, 937014810365584, 13380460644770848, 337457467862898896, 5333575373478669136, 148532521250931168352
Offset: 1

Views

Author

Keywords

References

  • T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n, 2*k) * doublefactorial(2*k-1) * (1+doublefactorial(2*k-1))/2, k=0..floor(n/2)), n=1..40); # Sean A. Irvine, Aug 18 2014
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<5, [1$2, 2, 4, 13][n+1],
         ((2*n-5) *a(n-1) +(n-1)*(n^2-4*n+1) *a(n-2)
          -(2*n-5)*(n-1)*(n-2) *a(n-3))/(n-4)
          +(n-1)*(n-2)*(n-3) *(a(n-5)-a(n-4)))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Aug 18 2014
  • Mathematica
    a[n_] := Sum[Binomial[n, 2*k] * (2*k-1)!! * (1 + (2*k-1)!!) / 2, {k, 0, n/2}]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 26 2015, after Sean A. Irvine *)
  • Sage
    def A002771(n):
        A000085 = lambda n: hypergeometric([-n/2,(1-n)/2], [], 2)
        A081919 = lambda n: hypergeometric([1/2,-n/2,(1-n)/2], [], 4)
        return ((A000085(n) + A081919(n))/2).n()
    [round(A002771(n)) for n in (1..22)]  # Peter Luschny, Aug 21 2014

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * (2*k-1)!! * (1 + (2*k-1)!!) / 2. - Sean A. Irvine, Aug 18 2014
(-n+4)*a(n) +(2*n-5)*a(n-1) +(n-1)*(n^2-4*n+1)*a(n-2) -(2*n-5)*(n-1)*(n-2)*a(n-3) -(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) +(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 19 2014
a(n) = (hyper2F0([-n/2,(1-n)/2],[],2)+hyper3F0([1/2,-n/2,(1-n)/2],[],4))/2. - Peter Luschny, Aug 21 2014
a(n) ~ ((-1)^n*exp(-1) + exp(1)) * n^n / (2*exp(n)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Sean A. Irvine, Aug 18 2014
Expanded definition from Peter Luschny, Aug 21 2014

A002370 a(n) = (2*n-1)^2 * a(n-1) - 3*C(2*n-1,3) * a(n-2) for n>1; a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 6, 120, 5250, 395010, 45197460, 7299452160, 1580682203100, 441926274289500, 154940341854097800, 66565404923242024800, 34389901168124209507800, 21034386936107260971255000, 15032296693671903309613950000, 12411582569784462888618434640000
Offset: 0

Views

Author

Keywords

References

  • A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5.
  • I. M. H. Etherington, Some problems of non-associative combinations, Edinburgh Math. Notes, 32 (1940), 1-6.
  • T. Muir, The Theory of Determinants in the Historical Order of Development. 4 vols., Macmillan, NY, 1906-1923, Vol. 3, p. 282.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A167028.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<2, 1, (2*n-1)^2 * a(n-1) -3*binomial(2*n-1, 3) *a(n-2))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    a[n_] := Gamma[n+1/2]*HypergeometricPFQ[{1/4, -n}, {}, -4]/Sqrt[Pi]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 17 2014, after Mark van Hoeij *)
  • PARI
    x='x+O('x^50);  v=Vec( (1-x)^(-1/4)*exp(x/4) );
    vector(#v,n, v[n]*(2*n-2)! ) \\ Joerg Arndt, Jan 21 2011

Formula

a(n) = (2*n)! * [x^(2*n)] (1-x^2)^(-1/4)*exp(x^2/4).
a(n) = 2^n*GAMMA(n+1/2)*A002801(n)/Pi^(1/2) = GAMMA(n+1/2)*hypergeom([1/4, -n],[],-4)/Pi^(1/2). - Mark van Hoeij, Oct 26 2011
a(n) ~ (2*n)! * exp(1/4) * GAMMA(3/4) / (Pi * sqrt(2) * n^(3/4)). - Vaclav Kotesovec, Feb 15 2015

Extensions

More terms from Jon E. Schoenfield, Mar 24 2010
Edited by Alois P. Heinz, Jan 21 2011
Showing 1-10 of 18 results. Next