cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001205 Number of clouds with n points; number of undirected 2-regular labeled graphs; or number of n X n symmetric matrices with (0,1) entries, trace 0 and all row sums 2.

Original entry on oeis.org

1, 0, 0, 1, 3, 12, 70, 465, 3507, 30016, 286884, 3026655, 34944085, 438263364, 5933502822, 86248951243, 1339751921865, 22148051088480, 388246725873208, 7193423109763089, 140462355821628771, 2883013994348484940
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways of covering K_n with cycles of length >= 3. Also number of 'frames' on n lines: given n lines in general position (none parallel and no three concurrent), a frame is a subset of n of the e C(n,2) points of intersection such that no three points are on the same line. - Mitch Harris, Jul 06 2006

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 410-411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 276 and 279.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.7.
  • Ph. Flajolet, Singular combinatorics, pp. 561-571, Proc. Internat. Congr. Math., Beijing 2002, Higher Education Press, Beijing, 2002, Vol III.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.6b, 3.3.34.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8. Also problems 5.23 and 5.15(a), case k=3.
  • Z. Tan and S. Gao, Enumeration of (0,1)-Symmetric Matrices, submitted [From Shanzhen Gao, Jun 05 2009] [apparently unpublished as of 2016]
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 77, Eq. 3.9.1.
  • W. A. Whitworth, Choice and Chance, Bell, 1901, p. 269, ex. 160.

Crossrefs

Cf. A000985, A000986, A002137. A diagonal of A059441 and A144163.

Programs

  • Maple
    a := n -> (-1)^n*n!*add((3/4)^k*binomial(-1/2, n-k)*hypergeom([1/2,-k], [1/2-n+k], 1/3)/ k!, k=0..n): seq(simplify(a(n)), n=0..21); # Peter Luschny, Aug 26 2017
  • Mathematica
    m = 21; CoefficientList[ Series[ Exp[-x/2 - x^2/4] / Sqrt[1-x], {x, 0, m}], x]*Table[n!, {n, 0, m}] (* Jean-François Alcover, Jun 21 2011, after e.g.f. *)
  • Maxima
    a(n):=sum(sum(binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-i),i,0,k),k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 25 2017 */
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(-x/2-x^2/4+x*O(x^n))/sqrt(1-x+x*O(x^n)),n))
    

Formula

a(n) ~ n!*exp(-3/4)/sqrt(Pi*n).
E.g.f.: exp(-x/2-x^2/4)/sqrt(1-x).
D-finite with recurrence a(n+1) = n*(a(n)+a(n-2)*(n-1)/2).
1/4^n * Sum_{b=0..floor(n/2)} Sum_{g=0..n-2*b} (-1)^(b+g) * 2^(2b+g) * n! * (2n-4b-2g)! / (b! * g! * (n-2b-g)!^2). - Shanzhen Gao, Jun 05 2009
a(n) = (-1)^n*n!*Sum_{k=0..n}(3/4)^k*binomial(-1/2, n - k)*hypergeom([1/2, -k], [1/2 - n + k], 1/3)/ k!. - Peter Luschny, Aug 26 2017

A002135 Number of terms in a symmetrical determinant: a(n) = n*a(n-1) - (n-1)*(n-2)*a(n-3)/2.

Original entry on oeis.org

1, 1, 2, 5, 17, 73, 388, 2461, 18155, 152531, 1436714, 14986879, 171453343, 2134070335, 28708008128, 415017867707, 6416208498137, 105630583492969, 1844908072865290, 34071573484225549, 663368639907213281, 13580208904207073801
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of collections of necklaces created by using exactly n different colored beads (to make the entire collection). - Geoffrey Critzer, Apr 19 2009
a(n) is the number of ways that a deck with 2 cards of each of n types may be dealt into n hands of 2 cards each, assuming that the order of the hands and the order of the cards in each hand are irrelevant. See the Art of Problem Solving link for proof. - Joel B. Lewis, Sep 30 2012
From Bruce Westbury, Jan 22 2013: (Start)
It follows from the respective exponential generating functions that A002135 is the binomial transform of A002137:
A002135(n) = Sum_{k=0..n} binomial(n,k)*A002137(k),
2 = 1.1 + 2.0 + 1.1,
5 = 1.1 + 3.0 + 3.1 + 1.1,
17 = 1.1 + 4.0 + 6.1 + 4.1 + 1.6, ...
A002137 arises from looking at the dimension of the space of invariant tensors of the r-th tensor power of the adjoint representation of the symplectic group Sp(2n) (for n large compared to r).
(End)
a(n) is the number of representations required for the symbolic central moments of order 2 for the multivariate normal distribution, that is, E[X1^2 X2^2 .. Xn^2|mu=0, Sigma] (Phillips 2010). These representations are the upper-triangular, positive integer matrices for which for each i, the sum of the i-th row and i-th column equals 2, the power of each component. This can be shown starting from the formulation by Joel B Lewis. See "Proof for multivariate normal moments" link below for a proof. - Kem Phillips, Aug 20 2014
Equivalent to Critzer's comment, a(n) is the number of ways to cover n labeled vertices by disjoint undirected cycles, hence the exponential transform of A001710(n - 1). - Gus Wiseman, Oct 20 2018

Examples

			For n = 3, the a(3) = 5 ways to deal out the deck {1, 1, 2, 2, 3, 3} into three two-card hands are {11, 22, 33}, {12, 12, 33}, {13, 13, 22}, {11, 23, 23}, {12, 13, 23}. - _Joel B. Lewis_, Sep 30 2012
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260, #12, a_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.9 and Problem 5.22.

Crossrefs

A diagonal of A260338.
Row sums of A215771.
Column k=2 of A257463 and A333467.

Programs

  • Maple
    G:=proc(n) option remember; if n <= 1 then 1 elif n=2 then
    2 else n*G(n-1)-binomial(n-1,2)*G(n-3); fi; end;
  • Mathematica
    a[x_]:=Log[1/(1-x)^(1/2)]+x/2+x^2/4;Range[0, 20]! CoefficientList[Series[Exp[a[x]], {x, 0, 20}], x]
    RecurrenceTable[{a[0]==a[1]==1,a[2]==2,a[n]==n*a[n-1]-(n-1)(n-2)* a[n-3]/2}, a,{n,30}] (* Harvey P. Dale, Dec 16 2011 *)
    Table[Sum[Binomial[k, i] Binomial[i - 1/2, n - k] (3^(k - i) n!)/(4^k k!) (-1)^(n - k - i), {k, 0, n}, {i, 0, k}], {n, 0, 12}] (* Emanuele Munarini, Aug 25 2017 *)
  • Maxima
    a(n):=sum(sum(binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-k-i),i,0,k),k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 25 2017 */
  • PARI
    a(n) = if(n<3, [1,1,2][n+1], n*a(n-1) - (n-1)*(n-2)*a(n-3)/2 ); /* Joerg Arndt, Apr 07 2013 */
    

Formula

E.g.f.: (1-x)^(-1/2)*exp(x/2+x^2/4).
D-finite with recurrence a(n+1) = (n+1)*a(n) - binomial(n, 2)*a(n-2). See Comtet.
Asymptotics: a(n) ~ sqrt(2)*exp(3/4-n)*n^n*(1+O(1/n)). - Pietro Majer, Oct 27 2009
E.g.f.: G(0)/sqrt(1-x) where G(k) = 1 + x*(x+2)/(4*(2*k+1) - 4*x*(x+2)*(2*k+1)/(x*(x+2) + 8*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 31 2013
a(n) = Sum_{k=0..n} Sum_{i=0..k} binomial(k,i)*binomial(i-1/2,n-k)*(3^(k-i)*n!)/(4^k*k!)*(-1)^(n-k-i). - Emanuele Munarini, Aug 25 2017

A333351 Array read by antidiagonals: T(n,k) is the number of k-regular loopless multigraphs on n labeled nodes, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 0, 6, 0, 1, 1, 0, 1, 1, 10, 22, 15, 1, 1, 0, 1, 0, 15, 0, 130, 0, 1, 1, 0, 1, 1, 21, 158, 760, 822, 105, 1, 1, 0, 1, 0, 28, 0, 3355, 0, 6202, 0, 1, 1, 0, 1, 1, 36, 654, 12043, 93708, 190050, 52552, 945, 1, 1, 0, 1, 0, 45, 0, 36935, 0, 3535448, 0, 499194, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 15 2020

Keywords

Examples

			Array begins:
=================================================================
n\k | 0   1    2      3       4        5         6          7
----+------------------------------------------------------------
  0 | 1   1    1      1       1        1         1          1 ...
  1 | 1   0    0      0       0        0         0          0 ...
  2 | 1   1    1      1       1        1         1          1 ...
  3 | 1   0    1      0       1        0         1          0 ...
  4 | 1   3    6     10      15       21        28         36 ...
  5 | 1   0   22      0     158        0       654          0 ...
  6 | 1  15  130    760    3355    12043     36935     100135 ...
  7 | 1   0  822      0   93708        0   3226107          0 ...
  8 | 1 105 6202 190050 3535448 45163496 431400774 3270643750 ...
  ...
		

Crossrefs

Rows n=4..6 are A000217(n+1), A244868 (with interspersed zeros), A244878.
Columns k=0..4 are A000012, A123023, A002137, A108243 (with interspersed zeros), A367497.
Cf. A059441 (graphs), A333157, A333330 (unlabeled nodes), A333467 (with loops).

Programs

  • PARI
    MultigraphsByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n-r, limit, src[i, 1], 0, src[i, 2], 0))); Mat(M);
    }
    T(n,k)={if((n%2&&k%2)||(n==1&&k>0), 0, vecsum(MultigraphsByDegreeSeq(n, k, (p,r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[,2]))}
    { for(n=0, 8, for(k=0, 7, print1(T(n,k), ", ")); print) }

A260340 Triangle read by rows: T(n,k) = number of sets of linear n-ads in k variables.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 22, 22, 1, 1, 1, 1, 130, 550, 130, 1, 1, 1, 1, 822, 16700, 16700, 822, 1, 1, 1, 1, 6202, 703297, 3330915, 703297, 6202, 1, 1, 1, 1, 52552, 38135272, 957659906, 957659906, 38135272, 52552, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

T(n,k) is the number of nonequivalent n X n binary matrices with k ones in every row and column up to permutation of rows. - Andrew Howroyd, Apr 18 2020

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,    1;
  1, 1,    1,      1;
  1, 1,    6,      1,       1;
  1, 1,   22,     22,       1,      1;
  1, 1,  130,    550,     130,      1,    1;
  1, 1,  822,  16700,   16700,    822,    1, 1;
  1, 1, 6202, 703297, 3330915, 703297, 6202, 1, 1;
  ...
		

Crossrefs

Columns k=0..4 are A000012, A000012, A002137, A333899, A333900.
Row sums are A333891.

Formula

T(n,k) = T(n,n-k). - Andrew Howroyd, Apr 18 2020

Extensions

Extended to include k=0 and more terms added by Andrew Howroyd, Apr 18 2020

A095693 Triangle read by rows: T(n,k) is the number of multigraphs without loops on n labeled nodes with k edges and maximum degree 2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 6, 1, 1, 6, 21, 22, 6, 1, 10, 55, 130, 130, 22, 1, 15, 120, 485, 1005, 822, 130, 1, 21, 231, 1400, 4830, 8547, 6202, 822, 1, 28, 406, 3416, 17465, 52052, 81676, 52552, 6202, 1, 36, 666, 7392, 52101, 230832, 610932, 859932, 499194, 52552
Offset: 0

Views

Author

Nicholas S. Horne (nickhorne(AT)cox.net), Jul 06 2004

Keywords

Comments

Sum of the each row of the triangle corresponds to sequence A000985. The diagonal of the triangular array T(n,1) represents the triangular numbers (A000217). The T(n,2) diagonal represents the doubly triangular numbers (A002817).
Number of symmetric n X n matrices with nonnegative integer entries and all row sums 2 and trace 2*(n-k). - Andrew Howroyd, Nov 07 2019

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,   1;
  1,  3,   6,    1;
  1,  6,  21,   22,    6;
  1, 10,  55,  130,  130,   22;
  1, 15, 120,  485, 1005,  822,  130;
  1, 21, 231, 1400, 4830, 8547, 6202, 822;
  ...
T(3,2)=6 since there are six ways that a multigraph with 3 nodes can be constructed with 2 edges such that no vertex has degree greater than two.
		

References

  • Horne, Nicholas S. "Analysis of Viable Network Configurations from a Combinatorial, Graphical and Algebraic Perspective." Diss. Providence College, 2004.

Crossrefs

Row sums are A000985.
Main diagonal is A002137.
Columns include A000217, A002817.

Programs

  • PARI
    T(n)={my(v=Vec(serlaplace(sqrt(1/(1-x*y) + O(x*x^n))*exp(x + (x^2*y/(1-x*y) - x*y)/2 + x^2*y^2/4 + O(x*x^n))))); vector(#v, i, Vecrev(v[i], i))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 07 2019

Formula

E.g.f.: sqrt(1/(1-x*y)) * exp(x + (x^2*y/(1-x*y) - x*y)/2 + x^2*y^2/4). - Andrew Howroyd, Nov 07 2019

Extensions

Definition clarified and terms a(37) and beyond from Andrew Howroyd, Nov 07 2019

A108246 Number of labeled 2-regular graphs with no multiple edges, but loops are allowed (i.e., each vertex is endpoint of two (usual) edges or one loop).

Original entry on oeis.org

1, 1, 1, 2, 8, 38, 208, 1348, 10126, 86174, 819134, 8604404, 98981944, 1237575268, 16710431992, 242337783032, 3756693451772, 61991635990652, 1084943597643964, 20072853005524696, 391443701509660096, 8024999955144721256, 172544980412641191776
Offset: 0

Views

Author

Marni Mishna, Jun 17 2005

Keywords

Examples

			a(3) = 2: {(1,2) (2,3) (1,3)}, {(1,1) (2,2) (3,3)}.
		

Crossrefs

Binomial transform of A001205.
Row sums of A144161. - Alois P. Heinz, Jun 01 2009

Programs

  • Maple
    b:= proc(n) option remember; if n=0 then 1 elif n<3 then 0 else (n-1) *(b(n-1) +b(n-3) *(n-2)/2) fi end: a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 12 2008
  • Mathematica
    CoefficientList[Series[E^(-x^2/4+x/2)/Sqrt[1-x], {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

Linear recurrence satisfied by a(n): {a(2) = 1, a(0) = 1, (-n^2 - 3*n - 2)*a(n) + (4 + 2*n)*a(n+1) + (-2*n-6)*a(n+2) + 2*a(n+3), a(1) = 1}.
E.g.f.: exp(-t^2/4 + t/2)/sqrt(1-t). - Vladeta Jovovic, Aug 14 2006
a(n) ~ sqrt(2)*n^n/exp(n-1/4). - Vaclav Kotesovec, Oct 17 2012

Extensions

More terms from Alois P. Heinz, Sep 12 2008

A345132 Number of (n+2) X (n+2) symmetric matrices with nonnegative integer entries, trace 0, with n rows that sum to 2, and 2 rows that sum to 1.

Original entry on oeis.org

1, 1, 3, 10, 46, 252, 1642, 12316, 104730, 995122, 10450414, 120192924, 1502537932, 20285580880, 294156077364, 4559608340968, 75236088623548, 1316668510772124, 24358939966126900, 475008770990906488, 9737844963832507656, 209366721066736679536
Offset: 0

Views

Author

Stefano Frixione, Jun 30 2021

Keywords

Comments

This is the q=1 member of the q-family of sequences F_q(n), defined as the number of (n+2q) X (n+2q) symmetric matrices with nonnegative integer entries, trace 0, with n rows that sum to 2, and 2q rows that sum to 1. It is relevant to the counting of dipole graphs as is discussed in the paper whose link is given below. The q=0 member of this family is the sequence A002137.

Crossrefs

Cf. A002137.

Programs

  • Mathematica
    genF=Exp[-y/2+y^2/4]/Sqrt[1-2*x-y];
    (* seq[q,N] gives {F_q(0),...F_q(N)} for any integers q and N *)
    seq[q_,N_]:=Table[D[D[genF,{x,q}],{y,n}]/.{x->0,y->0},{n,0,N}]

Formula

E.g.f.: exp(x^2/4-x/2)/(1-x)^(3/2).

A227292 Dimension of space of invariant tensors in the n-th tensor power of the adjoint representation of G2.

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 80, 436, 2786, 19538, 147771, 1182095, 9890463, 85866068, 769212600, 7080642324, 66754295740, 642857161008, 6309892895338, 6300760829973, 639049976047882, 6574281878157350, 68519019810831408, 722711344283052608, 7707346411412142258, 83037096707432139882
Offset: 0

Views

Author

Bruce Westbury, Jul 05 2013

Keywords

Comments

The limit a(n+1)/a(n) is 14. This is expected to be D-finite (and P-finite).

Examples

			For n=0 we have the trivial representation for n=2 we have the Killing form.
		

Crossrefs

Programs

  • LiE
    p_tensor(n,[0,1],G2)|[0,0]
Showing 1-8 of 8 results.