cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A260339 Erroneous version of A254243.

Original entry on oeis.org

1, 1, 2, 10, 93, 1317
Offset: 0

Views

Author

Keywords

A257463 Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 10, 17, 1, 1, 1, 1, 3, 23, 93, 73, 1, 1, 1, 1, 4, 40, 465, 1417, 388, 1, 1, 1, 1, 4, 73, 1746, 19834, 32152, 2461, 1, 1, 1, 1, 5, 114, 5741, 190131, 1532489, 1016489, 18155, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Comments

Also number of ways to partition the multiset consisting of k copies each of 1, 2, ..., n into n multisets of size k.

Examples

			A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   2,     2,       3,        3,         4, ...
  1, 1,   5,    10,      23,       40,        73, ...
  1, 1,  17,    93,     465,     1746,      5741, ...
  1, 1,  73,  1417,   19834,   190131,   1398547, ...
  1, 1, 388, 32152, 1532489, 43816115, 848597563, ...
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A002135, A254243, A268668.
Rows n=0+1, 2-5 give: A000012, A008619, A257464, A253259, A253263.
Main diagonal gives A334286.
Cf. A257462, A257493 (ordered factorizations).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, k) option remember; `if`(n=1, 1,
          add(`if`(d>i or bigomega(d)<>k, 0,
          b(n/d, d, k)), d=divisors(n)))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]];
    A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k];
    Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)

A254233 Number of ways to partition the multiset consisting of n copies each of 1, 2, and 3 into n sets of size 3.

Original entry on oeis.org

1, 1, 4, 10, 25, 49, 103, 184, 331, 554, 911, 1424, 2204, 3278, 4817, 6896, 9746, 13487, 18480, 24882, 33192, 43683, 56994, 73512, 94131, 119340, 150300, 187732, 233065, 287248, 352153, 428944, 519949, 626737, 752095, 897994, 1067924, 1264241, 1491155, 1751672
Offset: 0

Views

Author

Tatsuru Murai, Jan 27 2015

Keywords

Examples

			For n = 2, the set {1,1,2,2,3,3} can be partitioned into two sets in four ways: {{112},{233}}, {{113},{223}}, {{122},{133}}, and {{123},{123}}.
		

Crossrefs

Column k=3 of A257462.

Formula

G.f.: (x^12-x^11+x^10+3*x^9+5*x^8+x^7+4*x^6+x^5+5*x^4+3*x^3+x^2-x+1) / ((x^2+1)*(x^2-x+1)*(x^2+x+1)^3*(x+1)^4*(x-1)^8). - Alois P. Heinz, Apr 21 2015

Extensions

Fixed definition and examples by Kellen Myers, Apr 21 2015
a(14)-a(39) from Alois P. Heinz, Apr 21 2015

A333899 Number of nonequivalent n X n binary matrices with 3 ones in every row and column up to permutation of rows.

Original entry on oeis.org

1, 0, 0, 1, 1, 22, 550, 16700, 703297, 38135272, 2584332084, 214050246975, 21269928579625, 2497135296996934, 341930210261762434, 54008226638062039798, 9746833030828647070625, 1993080976749664740373600, 458405276998431265342151848, 117814680468332544208002721773
Offset: 0

Views

Author

Andrew Howroyd, Apr 18 2020

Keywords

Comments

Number of factorizations of m^3 into n factors, where m is a product of exactly n distinct primes and each factor is a product of 3 distinct primes.

Crossrefs

Column k=3 of A260340.
Cf. A254243.
Showing 1-4 of 4 results.