A257463
Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 10, 17, 1, 1, 1, 1, 3, 23, 93, 73, 1, 1, 1, 1, 4, 40, 465, 1417, 388, 1, 1, 1, 1, 4, 73, 1746, 19834, 32152, 2461, 1, 1, 1, 1, 5, 114, 5741, 190131, 1532489, 1016489, 18155, 1, 1
Offset: 0
A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 3, 3, 4, ...
1, 1, 5, 10, 23, 40, 73, ...
1, 1, 17, 93, 465, 1746, 5741, ...
1, 1, 73, 1417, 19834, 190131, 1398547, ...
1, 1, 388, 32152, 1532489, 43816115, 848597563, ...
-
with(numtheory):
b:= proc(n, i, k) option remember; `if`(n=1, 1,
add(`if`(d>i or bigomega(d)<>k, 0,
b(n/d, d, k)), d=divisors(n)))
end:
A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..8);
-
b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]];
A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k];
Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)
A254233
Number of ways to partition the multiset consisting of n copies each of 1, 2, and 3 into n sets of size 3.
Original entry on oeis.org
1, 1, 4, 10, 25, 49, 103, 184, 331, 554, 911, 1424, 2204, 3278, 4817, 6896, 9746, 13487, 18480, 24882, 33192, 43683, 56994, 73512, 94131, 119340, 150300, 187732, 233065, 287248, 352153, 428944, 519949, 626737, 752095, 897994, 1067924, 1264241, 1491155, 1751672
Offset: 0
For n = 2, the set {1,1,2,2,3,3} can be partitioned into two sets in four ways: {{112},{233}}, {{113},{223}}, {{122},{133}}, and {{123},{123}}.
A333899
Number of nonequivalent n X n binary matrices with 3 ones in every row and column up to permutation of rows.
Original entry on oeis.org
1, 0, 0, 1, 1, 22, 550, 16700, 703297, 38135272, 2584332084, 214050246975, 21269928579625, 2497135296996934, 341930210261762434, 54008226638062039798, 9746833030828647070625, 1993080976749664740373600, 458405276998431265342151848, 117814680468332544208002721773
Offset: 0
Showing 1-4 of 4 results.
Comments