cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257462 Number A(n,k) of factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 10, 10, 3, 1, 1, 1, 1, 26, 70, 25, 3, 1, 1, 1, 1, 71, 566, 465, 49, 4, 1, 1, 1, 1, 197, 4781, 11131, 2505, 103, 4, 1, 1, 1, 1, 554, 41357, 297381, 190131, 12652, 184, 5, 1, 1, 1, 1, 1570, 364470, 8349223, 16669641, 2928876, 57232, 331, 5, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Comments

Also number of ways to partition the multiset consisting of n copies each of 1, 2, ..., k into n multisets of size k.

Examples

			A(4,2) = 3: (2*3)^4 = 1296 = 6*6*6*6 = 9*6*6*4 = 9*9*4*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 10: (2*3*5*7)^2 = 44100 = 210*210 = 225*196 = 294*150 = 315*140 = 350*126 = 441*100 = 490*90 = 525*84 = 735*60 = 1225*36.
Square array A(n,k) begins:
  1, 1, 1,  1,    1,      1, ...
  1, 1, 1,  1,    1,      1, ...
  1, 1, 2,  4,   10,     26, ...
  1, 1, 2, 10,   70,    566, ...
  1, 1, 3, 25,  465,  11131, ...
  1, 1, 3, 49, 2505, 190131, ...
		

Crossrefs

Columns k=0+1, 2-5 give: A000012, A008619, A254233, A257114, A257518.
Rows n=0+1, 2-3 give: A000012, A257520, A333902.
Main diagonal gives A334286.
Cf. A257463, A333901 (ordered factorizations).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, k) option remember; `if`(n=1, 1,
          add(`if`(d>i or bigomega(d)<>k, 0,
          b(n/d, d, k)), d=divisors(n) minus {1}))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..k)^n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 1, 1, Sum[If[d > i || PrimeOmega[d] != k, 0, b[n/d, d, k]], {d, Divisors[n] // Rest}]]; A[n_, k_] := Module[ {p = Product[Prime[i], {i, 1, k}]^n}, b[p, p, k]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A254243 Number of ways to partition the multiset consisting of 3 copies each of 1, 2, ..., n into n sets of size 3.

Original entry on oeis.org

1, 1, 2, 10, 93, 1417, 32152, 1016489, 42737945, 2307295021, 155607773014, 12823004639504, 1267907392540573, 148160916629902965, 20199662575448858212, 3177820001990224608763, 571395567211112572679633, 116448309072281063992943561, 26700057600529091443246943530
Offset: 0

Views

Author

Tatsuru Murai, Jan 27 2015

Keywords

Examples

			a(1) = 1: 111.
a(2) = 2: 111|222 and 112|122.
a(3) = 10: 111|222|333, 111|223|233, 112|122|333, 112|123|233, 112|133|223, 113|122|233, 113|123|223, 113|133|222, 122|123|133, and 123|123|123.
		

Crossrefs

Cf. A002135 (2 instead of 3), A254233 (n copies each of 1, 2, and 3).
Column k=3 of A257463.

Extensions

Name and example edited by Danny Rorabaugh, Apr 22 2015
a(6)-a(10) from Alois P. Heinz, Apr 22 2015
Terms a(11) and beyond from Andrew Howroyd, Apr 18 2020
Showing 1-2 of 2 results.